

Intro Two-mode	networks	
Closed triads are impossible in bipartite ne but they are possible as mixed patterns.	etworks;	
One-with-two-mode triads.		
One-mode tie ⇒ two-mode agreement 'I go to places where my friends are'		
Two-mode agreement \Rightarrow one-mode tie	● ↑ → ■	
become friends'	\otimes	P
© Tom A.B. Snijders Oxford & Groningen Joint Network Dynamics	February, 2023	13 / 45

Models	
Actor-based models	
Actor-based models are defined here as extensions of actor-based models for dynamics of single networks (Snijders 2001, 2017).	
 The actors control their outgoing ties. For panel data: employ a continuous-time model to represent unobserved endogenous network evolution. The tips have inserting they are close rather than graphs. 	
 The use have menual, they are states ratio that events. The multiple relations together develop stochastically according to a Markov process. 	
 At any single moment in time, only one tie variable may change: no coordination. 	ø
© Tom A.B. Snijders Oxford & Groningen Joint Network Dynamics February, 2023	15 / 45

	Models		
Nota	ion		
Denot	e tie variable for r^{th} relation from <i>i</i> to <i>j</i> by		
	$X_{ij}^{(r)} = \begin{cases} 1 & \text{if } i \xrightarrow{r} j \\ 0 & \text{if } not i \xrightarrow{r} j, \end{cases}$		
where	this depends on time t.		
By X array	we denote the collection of all R relations: $\begin{pmatrix} X_{ij}^{(r)} \end{pmatrix}$ for $r = 1, \dots, R; i = 1, \dots, n; j = 1, \dots, n$		
			ø
© Tom A.B. S	nijders Oxford & Groningen Joint Network Dynamics	February, 2023	17 / 45

	Models			
The model is defined by its s the 'microsteps', which cons	smallest poss ist of a chang	ible steps, je in one tie va	riable:	
extend one new tie / withdraw	w one existin	g tie.		
offon	\otimes		→ ●	
⇒How rapidly does this hap ⇒What is the probability of t compared to other change	pen? his particular es?	tie change,		
				Q
© Tom A.B. Snijders Oxford & Groningen	Joint Network Dynamic	25	February, 2023	19 / 45

Models
 Outline

 Outline of algorithm – continued

 3. For this r and i, actor i may change one outgoing r-tie, or leave all outgoing tie variables
$$X_{ij}^{(r)}$$
 unchanged. The probability of changing toward any new situation x (x differs only in one tie variable from current situation!) is proportional to
 $exp\left(t_i^{(r)}(x)\right)$.

 @ Tom A.B. Sniders Oxford & Groningen
 Joint Network Dynamics
 February, 2023
 23 / 45

 $\begin{array}{ll} \text{Outine} & \text{Outine} \end{array}$ Step: Given that actor *i* may change a tie in relation *r*, the event that tie variable $X_{ij}^{(r)}$ is toggled $(X_{ij}^{(r)} \Rightarrow 1 - X_{ij}^{(r)})$ has probability $\frac{\exp\left(f_{i}^{(r)}(x \text{ changed in } x_{ij}^{(r)})\right)}{\sum_{h} \exp\left(f_{i}^{(r)}(x \text{ changed in } x_{ih}^{(r)})\right)}.$

	Models	Specification		
Within-network dependenci have been discussed extens	es and o sively el	covariate effects sewhere.		
A few examples of cross-ne with formulae for $s_{ik}^{(red)}(x)$.	twork d	ependencies are pre	sented,	
Since this a component of the this network is the depende - all others have an explanation - all o	he objeo nt relatio atory rol	ctive function for X ^{(re} on e.	d),	
				Q
© Tom A.B. Snijders Oxford & Groningen	Joint Netwo	rk Dynamics	February, 2023	27 / 45

$$f_i^{(r)}(\beta, x) = \sum_{k=1}^L \beta_k^{(r)} \, s_{ik}^{(r)}(x) \, ,$$

we consider an effect $s_{ik}^{(r)}(x)$ that depends only on this network $x^{(r)}$ itself, then good results are obtained by using the statistic

$$S_k := \sum_i s_{ik}^{(r)} (X(t_2))$$

and requiring, as part of the moment equation, that

$$\mathsf{E}_{\beta}\{S_k \mid X(t_1)\} = S_k^{\mathsf{observed}}$$

This can be implemented by an MCMC approximation using the Robbins-Monro method of stochastic approximation.

© Tom A.B. Snijders Oxford & Groningen

Joint Network Dynamics

Example	
Example	
Research with Vanina Torlo and Alessandro Lomi.	
International MBA program in Italy; 75 students; 3 waves.	
1. Friendship	
2. Advice:	
To whom do you go for help if you missed a class, etc.	
	Ŷ
© Tom A.B. Snijders Oxford & Groningen Joint Network Dynamics February, 2023	35 / 45

	Example				
Uni	variate r	esults			
	Friend	ship	Advi	се	
Effect	par.	(s.e.)	par.	(s.e.)	
outdegree (density)	-1.852***	(0.274)	-2.591***	(0.209)	
reciprocity	1.134*	(0.530)	1.897***	(0.231)	
transitive triplets	0.341***	(0.052)	0.308***	(0.046)	
transitive reciprocated triplets	-0.341***	(0.098)	-0.021	(0.086)	
indegree - popularity	0.012	(0.007)	0.0359***	(0.0066)	
outdegree - popularity	-0.0424***	(0.0052)	-0.052	(0.033)	
outdegree - activity	-0.075†	(0.041)	0.017	(0.014)	
reciprocal degree - activity	0.123	(0.079)	-0.104*	(0.043)	
gender alter	0.062	(0.074)	0.011	(0.091)	
gender ego	-0.146 [†]	(0.077)	-0.281**	(0.095)	
same gender	0.306***	(0.071)	0.163 [†]	(0.090)	
same nationality	0.264**	(0.085)	0.455***	(0.116)	
performance alter	-0.021	(0.021)	0.080**	(0.030)	
performance squared alter	N.A.	(N.A.)	N.A.	(N.A.)	
performance ego	-0.109***	(0.024)	-0.073*	(0.030)	
performance squared ego	N.A.	(N.A.)	0.029**	(0.010)	į
performance difference squared	-0.0224***	(0.0048)	-0.0307***	(0.0070)	100

[†] p < 0.1; ^{*} p < 0.05; ^{**} p < 0.01; ^{***} p < 0.001; overall maximum convergence ratio 0.14.

© Tom A.B. Snijders Oxford & Groningen Joint Network Dynamics

Example	
The "five-parameter" model was used, but pruned; the ${\tt N}$, ${\tt A}$. indications refer to parameters that were fixed-and-tested using the score-type test.	
This is an example of using the score-type test as a confirmation that effects left out of the model are indeed non-significant.	
Note about the decimals :	
At least a precision of 10% of a standard error should be reported.	
This means that it should be avoided to report a decimal number ending, after the leading zeros, by one single non-zero digit.	
now the multivariate results :	ø
© Tom A.B. Snijders Oxford & Groningen Joint Network Dynamics February 2023	37 / 45

	Example			
Coevolution results:	within-n	etwork	effects	
	Friend	ship	Advi	ce
Effect	par.	(s.e.)	par.	(s.e.)
outdegree (density)	-2.944***	(0.155)	-3.751***	(0.264)
reciprocity	1.605***	(0.252)	1.133***	(0.245)
transitive triplets	0.178***	(0.024)	0.210***	(0.053)
transitive recipr. triplets	-0.143***	(0.039)	0.027	(0.090)
indegree - popularity	0.0370***	(0.0096)	0.0443***	(0.0075)
outdegree - popularity	-0.0294***	(0.0067)	0.024	(0.027)
outdegree - activity	0.0071	(0.0082)	0.050***	(0.015)
recipr. degree - activity	-0.007	(0.031)	-0.118**	(0.042)
gender alter	0.043	(0.071)	0.027	(0.097)
gender ego	-0.092	(0.073)	-0.202*	(0.094)
same gender	0.194**	(0.070)	0.048	(0.091)
same nationality	0.213**	(0.081)	0.358**	(0.121)
perf. alter	-0.035†	(0.021)	0.139***	(0.033)
perf. ego	-0.103***	(0.021)	-0.014	(0.031)
perf. squared ego	-		0.043***	(0.010)
perf. difference squared	-0.0189***	(0.0045)	-0.0272***	(0.0074)

© Tom A.B. Snijders Oxford & Groningen Joint Network Dynamics February, 2023 38 / 45

Coevolution results: cross-network effects

	Friendship		Advice		
Effect	par.	(s.e.)	par.	(s.e.)	
advice	1.602***	(0.246)	-	-	
incoming advice	0.810***	(0.193)	-		
friendship			1.426***	(0.233)	
incoming friendship	-		0.565**	(0.217)	
mixed indegree popularity	-0.044**	(0.015)	-0.031*	(0.013)	
mixed outdegree popularity	-0.066***	(0.017)	-0.0044	(0.0058)	
mixed outdegree activity	-0.046*	(0.023)	-0.046***	(0.011)	
WWX closure	0.049	(0.103)	0.035	(0.038)	
WXX closure	0.094	(0.087)	0.052	(0.042)	
XWX closure	0.062 [†]	(0.036)	-0.034	(0.038)	
[†] $p < 0.1$; [*] $p < 0.05$; ^{**} $p < 0.05$	01; *** p < 0.001	; overall maxi	num convergence	ratio 0.07.	

© Tom A.B. Snijders Oxford & Groningen

Joint Network Dynamics

February, 2023 39 / 45

Example
\Rightarrow Other perspectives possible
by combining one-mode and two-mode networks.
\Rightarrow The method is available in RSiena.
This works for a small number (e.g., 2-6) of networks,
and a limited number of actors (up to a few hundred).
\Rightarrow If there are implication relations between the networks,
e.g., two networks might be mutually exclusive,
or one might be a sub-network of the other,
then this constraint is observed, noted in the print01Report,
and respected in the simulations.
This gives possibilities for networks with valued ties
by using different dichotomies.
i i i i i i i i i i i i i i i i i i i
© Tom A.B. Snijders Oxford & Groningen Joint Network Dynamics February, 2023 45 / 45