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Dynamics of networks and behaviour

1. Networks as dependent and independent variables

Co-evolution

Simultaneous endogenous dynamics of networks and behaviour: e.g.,

individual humans & friendship relations:
attitudes, behaviour (lifestyle, health, etc.)

individual humans & cooperation relations:
work performance

companies / organisations & alliances, cooperation:
performance, organisational success.
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Dynamics of networks and behaviour

Two-way influence between networks and behaviour

Relational embeddedness is important
for well-being, opportunities, etc.

Actors are influenced in their behaviour, attitudes, performance
by other actors to whom they are tied
e.g., network resources (social capital), social control.

(N. Friedkin, A Structural Theory of Social Influence, C.U.P., 1998).
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Dynamics of networks and behaviour

In return, many types of tie (friendship, cooperation, liking, etc.)
are influenced positively by
similarity on relevant attributes: homophily
(e.g., McPherson, Smith-Lovin, & Cook, Ann. Rev. Soc., 2001.)

More generally, actors choose relation partners
on the basis of their behaviour and other characteristics
(similarity, opportunities for future rewards, etc.).

Influence, network & behaviour effects on behaviour;
Selection, network & behaviour effects on relations.
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Dynamics of networks and behaviour

Terminology

relation = network = pattern of ties in group of actors;
behaviour = any individual-bound changeable attribute

(including attitudes, performance, etc.).

Relations and behaviours are endogenous variables
that develop in a simultaneous dynamics.

Thus, there is a feedback relation in the dynamics
of relational networks and actor behaviour / performance:
macro ⇒ micro ⇒ macro · · · ·

(although network perhaps is meso rather than macro)
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Dynamics of networks and behaviour

The investigation of such social feedback processes is difficult:

Both the network ⇒ behaviour
and the behaviour ⇒ network effects
lead ‘network autocorrelation’:
“friends of smokers are smokers”
“high-reputation firms don’t collaborate
with low-reputation firms”.
It is hard to ascertain the strengths
of the causal relations in the two directions.

For many phenomena
quasi-continuous longitudinal observation is infeasible.
Instead, it may be possible to observe
networks and behaviours at a few discrete time points.
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Dynamics of networks and behaviour Panel Data

Data

We consider again panel data:
network panel data, in which at two or more waves
for all actors in the network we observe

⇒ network: who is tied to whom

⇒ behavior,

where the behavior variable is assumed to be ordinal discrete
with integer values; simplest case: dichotomous.

(continuous behavior variables: Niezink & Snijders, Soc. Methodology, 2019)

Aim: disentangle effects networks ⇒ behavior
from effects behavior ⇒ networks.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Statistical Methodology
for the evolution of networks and behavior

Integrate the influence (dep. var. = behavior)
and selection (dep. var. = network) processes.

Again the model assumes an evolution in continuous time;
the ‘state’ of the process now is
the combination of the network and the behavior of all actors;

each dependent variable (network, behavior)
has its own rate and evaluation function,
depending on both dependent variables,
which leads to their mutual dependence /
entwinement in a joint feedback process.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Outline of the co-evolution model: micro-step
The co-evolution of a network X and a behavior variable Z
proceeds in the following smallest steps:

1 at a random ‘next’ moment, an actor i is chosen,
and a variable V is chosen which can be X or Z ;

2 ⇒ if V = X then actor i chooses an actor j for creating
or dropping the tie i → j , or leaves everything unchanged;

⇒ if V = Z then actor i chooses an increment −1, 0, or +1
as the change for Z (restricted by its range).

3 the change (if any) is put into effect, and the process restarts.

(If there are several networks and/or behaviors,
there will be more V ’s.)
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Flow chart for the micro-step
The co-evolution Markov chain is a succession of micro-steps;
variables can be networks or actor-level variables.

Generate
∆ time

λ

Choose
variable h

λ

Choose
actor i

h, λ

Choose
tie change x (h)

ij

or behavior change x (h)
i

h, i , f

Effectuate changes

t , x
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Specification for the network-and-behavior model

The network and behavior both have their own evaluation function,
with a basis constituted by what drives the variable itself,
and added to this a dependence on each other.

For the network, the basis is as above;
for the behavior, the basis is a feedback model for Z
(including regression to the mean) based on available variables;

Dependence on each other, e.g.:

selection : network ties i → j more likely when Zi and Zj are similar;

influence : when i ’s ‘friends’ on average are higher w.r.t. Z ,
Zi will have a stronger upward tendency.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Actor-driven models – elaboration

Each actor “controls” not only his outgoing ties,
collected in the row vector

(
Xi1(t), ...,Xin(t)

)
,

but also his behaviour Zi(t) =
(

Zi1(t), ...,ZiH(t)
)

(H is the number of dependent behaviour variables).

Network change process and behaviour change process
run simultaneously, and influence each other
being each other’s changing constraints.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

At stochastic times
(rate functions λX for changes in network,
λZh for changes in behaviour h),
the actors may change a tie or a behaviour.

Probabilities of change are increasing functions of
evaluation functions of the new state,
defined specifically for network, f X ,
and for each behaviour, f Zh .

Again, only the smallest possible steps are allowed:
change one tie variable,
or move one step up or down on a behaviour variable.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

For network change, change probabilities are as before.

For the behaviours, the formula of the change probabilities is

pihv (β, z) =
exp

(
f (i ,h, v)

)∑
u

exp
(
f (i ,h,u)

)
where f (i ,h, v) is the evaluation function calculated
for the potential new situation after a behaviour change,

f (i ,h, v) = f Z
i
(
β, z(i ,h ; v)

)
.

Again, multinomial logit form.
The summation in the denominator extends
over the 2 or 3 options of permitted changes in {−1,0,+1}.

Again, a ‘myopic stochastic optimizing’ interpretation is possible.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Micro-step for change in network:

Remember: at random moments occurring at a rate λX
i ,

actor i is designated
to make a change in one tie variable:
the micro-step (on ⇒ off, or off ⇒ on.)

micro-step for change in behaviour:

At random moments occurring at a rate λ
Zh
i ,

actor i is designated to make a change in behaviour h
(one component of Zi , assumed to be ordinal):
the micro-step is a change to an adjacent category; or stay the same.

Again, many micro-steps can accumulate to big differences.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Optimizing interpretation:

When actor i ‘may’ change an outgoing tie variable to some actor j ,
he/she chooses the ’best’ j by maximizing
the evaluation function f X

i (β,X , z) of the situation obtained
after the coming network change
plus a random component representing unexplained influences;

and when this actor ‘may’ change behaviour h,
he/she chooses the “best” change (up, down, nothing)
by maximizing the evaluation function f Zh

i (β, x ,Z ) of the situation
obtained after the coming behaviour change
plus a random component representing unexplained influences.

There is no comparison network — behaviour.
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Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Optimal network change:

The new network is denoted by x (±ij).
The attractiveness of the new situation
(evaluation function plus random term)
is expressed by the formula

f X
i (β, x

(±ij), z) + UX
i (t , x , j) .

⇑

random component

(Note that the network is also permitted to stay the same.)

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics March, 2023 17 / 71



Dynamics of networks and behaviour Co-evolution of Networks and Behavior

Optimal behaviour change:

Whenever actor i may make a change in variable h of Z ,
he changes only one behaviour, say zih , to the new value v .
The new vector is denoted by z(i ,h ; v).
Actor i chooses the “best” h, v by maximizing the evaluation function of
the situation obtained after the coming behaviour change plus a
random component:

f Zh
i (β, x , z(i ,h ; v)) + UZh

i (t , z,h, v) .

⇑

random component

(behaviour is permitted to stay the same.)
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Dynamics of networks and behaviour Specification; effects

Specification of the behaviour model

Many different reasons why networks are important for behaviour; e.g.

1 imitation :
individuals imitate others
(basic drive; uncertainty reduction).

2 social capital :
individuals may use resources of others;

3 coordination :
individuals can achieve some goals
only by concerted behaviour;

Theoretical elaboration helpful for a good data analysis.
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Dynamics of networks and behaviour Specification; effects

Evaluation function for dynamics of behaviour f Z
i is again

a linear combination

f Z
i (β, x , z) =

L∑
k=1

βk sik (x , z) .

Basic effects:

1 linear shape ,
sZ

i1(x , z) = zih

2 quadratic shape, ‘effect behaviour on itself’,
sZ

i2(x , z) = z2
ih

Quadratic shape effect important for model fit.
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Dynamics of networks and behaviour Specification; effects

For a negative quadratic shape parameter,
the model for behaviour is a unimodal preference model.

zh

f Zh
i (β, x, z)

1 2 3 4

For positive quadratic shape parameters ,
the behaviour evaluation function can be bimodal
(‘positive feedback’).
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Dynamics of networks and behaviour Specification; effects

3 behaviour-related average similarity,
average of behaviour similarities between i and friends
si3(x) = 1

xi+

∑
j xij sim(zih, zjh)

where sim(zih, zjh) is the similarity between vi and vj ,

sim(zih, zjh) = 1 −
|zih − zjh|

RZ h
,

RZ h being the range of Z h;

4 average behaviour alter — an alternative to similarity:
si4(x , z) = zih

1
xi+

∑
j xijzjh

Effects 3 and 4 are alternatives for each other:
they express the same theoretical idea of influence
in mathematically different ways.
The data, and/or theory, will have to differentiate between them.
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Dynamics of networks and behaviour Specification; effects

Network position can also have influence on behaviour dynamics
e.g. through degrees rather than through behaviour
of those to whom one is tied:

5 popularity-related tendency, (in-degree)
si5(x , z) = zih x+i

6 activity-related tendency, (out-degree)
si6(x , z) = zih xi+
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Dynamics of networks and behaviour Specification; effects

7 dependence on other behaviours (h ̸= ℓ) ,
si7(x , z) = zih ziℓ

8 influence from other characteristics V
si8(x , z) = zih

1
xi+

∑
j xijvj ,

analogous to average alter for behaviour.

For both the network and the behaviour dynamics,
extensions are possible depending on the network position.
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Dynamics of networks and behaviour Specification; effects

Now focus on the similarity effect in evaluation function :

sum of absolute behaviour differences between i and his friends
si2(x , z) =

∑
j xij sim(zih, zjh) .

This is fundamental both
to network selection based on behaviour,
and to behaviour change based on network position.
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Dynamics of networks and behaviour Specification; effects

A positive coefficient for this effect means that the actors
prefer friends with similar Zh values
(network autocorrelation).

Actors can attempt to attain this by changing their own
Zh value to the average value of their friends
(network influence, contagion),

or by becoming friends with those with similar Zh values
(selection on similarity).
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Estimation

Statistical estimation: networks & behaviour

Procedures for estimating parameters in this model are
similar to estimation procedures for network-only dynamics:
Methods of Moments & Stochastic Approximation,
conditioning on the first observation X (t1),Z (t1) .

The two different effects,
networks ⇒ behaviour and behaviour ⇒ networks,
both lead to network autocorrelation of behaviour;

but they can be (in principle)
distinguished empirically by the time order: respectively
association between ties at tm and behaviour at tm+1;
and association between behaviour at tm and ties at tm+1.
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Estimation

Statistics for use in method of moments:

for estimating parameters in network dynamics:

M−1∑
m=1

n∑
i=1

sik (X (tm+1),Z (tm)) ,

and for the behaviour dynamics:

M−1∑
m=1

n∑
i=1

sik (X (tm),Z (tm+1)) .

‘cross-lagged statistics’.
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Estimation

The data requirements for these models are strong:
few missing data; enough change on the behavioural variable.

Currently, work still is going on about good ways
for estimating parameters in these models.

Maximum likelihood estimation procedures
(currently even more time-consuming; under construction...)
are preferable for small data sets.
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Example

Example :
Study of smoking initiation and friendship
(following up on earlier work by P. West, M. Pearson & others)

(Steglich, Snijders & Pearson, Sociological Methodology, 2010).

One school year group from a Scottish secondary school
starting at age 12-13 years, was monitored over 3 years;
total of 160 pupils, of which 129 pupils present at all 3 observations;
with sociometric & behaviour questionnaires at three moments, at
appr. 1 year intervals.

Smoking: values 1–3;
drinking: values 1–5;

covariates:
gender, smoking of parents and siblings (binary), pocket money.
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Example Descriptives

wave 1 girls: circles
boys: squares

node size: pocket money

color: top = drinking
bottom = smoking

(orange = high)
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Example Descriptives

wave 2 girls: circles
boys: squares

node size: pocket money

color: top = drinking
bottom = smoking

(orange = high)
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Example Descriptives

wave 3 girls: circles
boys: squares

node size: pocket money

color: top = drinking
bottom = smoking

(orange = high)
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Example Descriptives

Descriptives of covariate change: drinking

Observed changes in alcohol use in the Glasgow data, pooled over periods.

tend

1 2 3 4 5
1: I don’t drink (alcohol) 3 3 5 1 0
2: once or twice a year 0 35 27 14 3

tbegin 3: about once a month 1 13 31 20 3
4: about once a week 0 4 10 25 8
5: more than once a week 0 0 2 4 11

The idea of an underlying process of micro-steps seems reasonable.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics March, 2023 34 / 71



Example Descriptives

Descriptives of covariates: smoking

Observed changes in tobacco use, pooled over periods.

tend

1 2 3
1: non-smoker 193 9 18

tbegin 2: occasional smoker 6 3 9
3: regular smoker 3 3 27

Not so much variation.
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Example Results

Results

The table of results is distributed over 4 pages:

structural effects and effect of sex

friendship: effects of smoking, drinking, pocket money

drinking

smoking.
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Example Results

Effect par. (s.e.)

Network Dynamics
constant friendship rate (period 1) 11.403 (1.147)
constant friendship rate (period 2) 9.237 (0.943)
outdegree (density) –2.693∗∗∗ (0.312)
reciprocity 3.388∗∗∗ (0.290)
GWESP-FF (α = 0.30) 2.430∗∗∗ (0.131)
indegree - popularity –0.053∗ (0.024)
outdegree - activity 0.030 (0.044)
reciprocal degree - activity –0.143∗ (0.068)
indegree - activity –0.120∗∗ (0.046)
sex alter –0.084 (0.101)
sex ego 0.017 (0.111)
same sex 0.558∗∗∗ (0.087)
reciprocity × GWESP-FF –0.913∗∗∗ (0.256)
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Example Results

Network Dynamics
Effect par. (s.e.)

Network Dynamics
drinking alter –0.016 (0.093)
drinking squared alter –0.107 (0.096)
drinking ego 0.183† (0.108)
drinking e–a difference squared –0.090 (0.058)
smoking alter 0.132 (0.098)
smoking ego –0.177 (0.116)
smoking similarity 0.437∗ (0.179)
money/10 alter 0.105 (0.075)
money/10 squared alter 0.063 (0.040)
money/10 ego –0.103 (0.076)
money/10 e–a difference squared –0.067∗∗ (0.025)
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Example Results

Effect par. (s.e.)

Behaviour Dynamics: drinking
rate drinking (period 1) 1.634 (0.336)
rate drinking (period 2) 2.454 (0.534)
drinking linear shape 0.436∗∗ (0.141)
drinking quadratic shape –0.605∗∗ (0.192)
drinking average alter 1.226∗ (0.545)
drinking: effect from sex 0.068 (0.212)
drinking: effect from smoking –0.096 (0.202)
drinking: effect from moneys 0.021 (0.015)
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Example Results

Effect par. (s.e.)

Behaviour Dynamics: smoking
rate smoking (period 1) 4.389 (1.686)
rate smoking (period 2) 4.162 (1.345)
smoking linear shape –3.375∗∗∗ (0.356)
smoking quadratic shape 2.595∗∗∗ (0.332)
smoking average alter 1.562∗∗ (0.600)
smoking: effect from sex –0.002 (0.270)
smoking: effect from smoking at home –0.114 (0.264)
smoking: effect from drinking –0.113 (0.245)
smoking: effect from moneys 0.016 (0.019)
† p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

convergence t ratios all < 0.03. Overall maximum convergence ratio 0.11.
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Example Results

The results for the structural network effects and for the effect of sex
and money are almost the same as for the network-only analysis;
the effects of smoking and drinking on friendship are somewhat
different, and have smaller standard errors;
their joint effect tests are less strongly significant.

Joint effect of drinking: χ2
4 = 6.2,p = 0.19.

Joint effect of smoking: χ2
3 = 8.9,p = 0.03.

Joint effect of pocket money: χ2
4 = 15.3,p < 0.005.

The influence effects for smoking and drinking are significant.

By the way, if for drinking the model is specified as ego, alter, and
similarity, then similarity is marginally significant (t = 1.62, p = 0.06);
this illustrates the importance of choosing the model
before looking at results in case of a strict testing approach.
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Example Results

Parameter interpretation for behaviour change

The evaluation function for behaviour can be plotted as a function of Z ,
the behavior itself, for various different values
of the average behaviour of the friends (‘average alter’).

This is treated in the manual as the Ego-alter Influence Table,
and the website contains a script InfluenceTables.r.
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Example Results
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Example Results
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Example Results

Mind the different shapes of the functions for smoking and drinking:

For drinking, the influence function is concave,
and it is convex for smoking.
This is expressed by
the sign of the coefficient of the quadratic shape effect,
which is the quadratic term in the evaluation function.
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Co-evolution

Co-evolution, more generally

The idea of ‘network-behaviour co-evolution’:

network is considered as one complex variable X (t);

behaviour is considered as one complex variable Z (t);

these are evolving over time in mutual dependence X (t) ↔ Z (t),
changes occurring in many little steps,
where changes in X are a function of the current values of

(
X (t),Z (t)

)
,

and the same holds for changes in Z .

This may be regarded as a ‘systems approach’,
and is also applicable to more than one network
and more than one behaviour.
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Co-evolution Multivariate networks

4. Other co-evolution models

The co-evolution approach can be applied also to
network-network co-evolution.

One or both of the networks could also be an affiliation network,
i.e., a two-mode network where the first mode is the actor set
and the second mode a set of binary non-exclusive attributes.

For example: individuals and clubs; firms and activities; etc.
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Co-evolution Multivariate networks

Multiple networks require multilevel thinking
Interdependencies between networks can play on various levels;
e.g., for friendship and advice:

1 dyadic entrainment: friends become advisors;
2 dyadic exchange:

I ask advice from those who say I am their friend;
3 actor level: those who have many friends get many advisors

(not necessarily the same persons)
(4 combinations in/outdegrees);

4 mixed closure 1: friends of friends become advisors;
5 mixed closure 2: advisors of friends become advisors;
6 and other mixed closures.

(See Snijders, Lomi, Torlò 2013; Snijders, 2016)
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Co-evolution Multivariate networks

One-mode – two-mode co-evolution

For one-mode – two-mode co-evolution,
influence and selection can be modified to the comparison of
affiliation-based focal closure and association-based affiliation closure:
(Cf. Easley & Kleinberg, 2010; Lomi & Stadtfeld, 2014)

Do we associate with those who have the same activities,
or do we choose the same activities as those with whom we associate?
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Mixed closure in a combined one- and two-mode network.

Circles (left) are mode-1, squares (right) are mode-2 nodes.

Top: affiliation-based network closure;
bottom: network-based affiliation closure.
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Various topics

5. Miscellanea

Finally, a number of topics
that play around the background of this type of modeling.
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Various topics Representation of change

Change and the Stochastic Actor-oriented Model

Parameters in the actor-oriented model determine how change occurs,
but are not directly reflected by changes in network features.

Note that even though the conditional probabilities
as determined by the evaluation function are constant
(unless it contains time-dependent covariates),
the network itself may and usually will be changing
in the direction of some dynamic equilibrium
(like all Markov processes).

‘Constant transition distribution, changing marginal distribution’
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Various topics Representation of change

Change and the Stochastic Actor-oriented Model (2)

Example : a positive transitivity parameter means that
there is a systematic tendency favoring transitivity;
but it does not mean that on average transitivity is increasing,
because there also are random tendencies away from transitivity.

For a network that starts with little transitive closure
a positive transitivity parameter will imply increasing transitivity;
but for a network that starts highly transitive,
a positive transitivity parameter may go together
with decreasing transitivity.

Next page shows a simulation example, combining
two different parameters and two different starting networks.
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β3 = 0.25, observed starting network
β3 = 0.25, artificial starting network
β3 = 0, observed starting network
β3 = 0, artificial starting network

Artificial initial network:
reduced transitivity;
(light colors)

β3 = transitivity parameter
in simulations.
(blue: 0.3; green: 0)

Blue curves have same parameters but different starting networks;

green curves likewise.
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Various topics Model specification

Model specification
For a good model specification, we need to start with reflection about
what might influence the creation and disappearance of network ties,
balancing between what is theoretically likely or possible
and what is empirically discernible.

But we still know little about network dynamics.

outdegree effect: balances between creation-termination of ties;
reciprocity: ‘always’ there;
transitivity: also ‘always’ there,
but has several possible representations;
degree effects:
outdegrees vary because of (e.g.) response tendencies or
resource differences, indegrees vary because of (e.g.) popularity
or status differences, should be included by default.
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Various topics Model specification

Model specification: continued

For larger networks, the structure of the environment
and the associated meeting opportunities must be represented;
e.g., ‘same classroom’, distance, ‘same sector’.

Interactions are possible, also between covariates and structure.

Some checks for the model specification can be obtained
by studying goodness of fit for distributions of indegree / outdegrees,
triad census, distribution of geodesic distances.

It is currently unknown how robust results are for misspecification.
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Various topics Hierarchy

Model specification: hierarchy requirements

There are hierarchy principles somewhat like in regression analysis:
simpler configurations should be used as controls
for complicated configurations.

This leads to heavy controls for multiple network co-evolution
and complicated multi-node effects.
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Various topics Hierarchy

Hierarchy
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The transitive triplet (left) includes three subgraphs (right);
actor i can create a transitive triplet by closing i → j or i → k ;
therefore, to properly test transitivity, the two-path
and two-in-star configurations should be included in the model.
These correspond to the
outdegree-popularity and indegree-popularity effects.
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Various topics Causality?

Causality?

Network data are often observational, and relations are crucial
for how social actors try to attain their goals.
Therefore, networks in real life are highly endogenous.

Attaining causal conclusions about network effects from
non-experimental studies is hard, because if ties are changed, actors
will try something else that is similarly helpful for what they try to attain.

Causality in observational research, certainly in network research,
is a Holy Grail: a lofty and important aim,
which we should not expect to attain;
cf. Shalizi & Thomas (2011):
selection and influence are generically confounded.
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Various topics Causality?

D.R. Cox / R.A. Fisher about causality: Make your theories elaborate,
construct explanations at a deeper level.

P. Hedström & P. Ylikoski: causal mechanisms.

Network approaches themselves are a deeper level
than traditional quantitative social science approaches,
representing interaction processes,
and in this sense may help in coming closer to causal insights.

The approach of Stochastic Actor-oriented Modeling does not
lead to causal conclusions in the Holland-Rubin counterfactual sense;
it leads to conclusions about time sequentiality.
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Various topics Network delineation

Network delineation

For a good network analysis, network delineation is important:
the analysis proceeds as if the delineated set is the whole world –
anathema to the basic tenets of the network approach.

Linked to this is the property that missing data, even randomly missing,
can severely bias results of network analysis.

However, much network research is not ideal in this respect.

My impression is that, if the sampled network contains, for the actors
included, the main parts of their relevant personal network, the general
conclusions will tend to be correct; even if parameter estimates are biased.

This is supported by some very limited simulations.
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Conclusion

6. Conclusion
These models represent network structure
as well as attributes / behaviour.

Theoretically: they combine agency and structure.

Available in
package RSiena in the statistical system R.

What was treated here is just the basic structure.
Further possibilities, e.g.: multivariate,
valued (only for few values!), two-mode, non-directed,
continuous behaviour variables.

Important: model choice, goodness-of-fit.

The method is in a stage of continuous development:
networks are very complicated data structures,
we are only starting to understand them.
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Conclusion

Discussion (2)

This approach attempts to tackle peer effects questions
by process modeling: data-intensive
and potentially assumption-intensive.

Cox / Fisher: Make your theories elaborate.

This type of analysis offers a very restricted
take an causality: only time sequentiality;
but network approaches can get closer to ‘mechanisms’
than approaches with atomic actors.

Assessing network effects is full of confounders.
Careful theory development, good data are important.
Asses goodness of fit of estimated model.
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Conclusion

What distinguishes a statistical modeling approach
from other kinds of network analysis?

⇒ Direct combination of networks and attributes
and: combination of structure and agency.

⇒ Distinction dependent ⇔ explanatory variables

⇒ Hypothesis testing,
clearer support of theory development.

⇒ Combination of multiple mechanisms: test theories
while controlling for alternative explanations.

⇒ Assessment of uncertainties in inference.

· · · . . . but the classical network studies are also important
(positions, equivalence, centrality, blockmodeling, .....) !
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Conclusion

Other work (recent, current, near future)
1 Changing composition of node set (Huisman & Snijders, SMR 2003).

2 Score-type tests (Schweinberger, BJMSP 2011).

3 Time heterogeneity (Lospinoso et al., ADAC 2011),
function <sienaTimeTest>.

4 Goodness of fit (Lospinoso & Snijders, Meth. Innovations 2019),
function <sienaGOF>.

5 Bayesian estimation; Maximum Likelihood estimation
(Koskinen & Snijders, J.Stat.Plann.Inf. 2007);
(Snijders, Koskinen, & Schweinberger, Ann.Appl.Statist. 2010).

6 Treatment of missing data
(Krause et al., Ital. J. Stat., 2018); script on website.

7 Explained variation (‘R2’)
(Snijders, Math.Soc.Sci. 2004; Indlekofer, 2014); function sienaRI.
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Conclusion

Model extensions
1 Non-directed relations. (Snijders & Pickup, 2017)

2 Multivariate relations. (Snijders, Lomi, & Torlò, SoN 2013)

3 Valued relations (example in Elmer, Boda, Stadtfeld, Network Sci. 2017).

4 Two-mode networks. (Koskinen & Edling, SoN 2011;
and Snijders, Lomi, & Torlò, SoN 2013)

5 Diffusion of innovations (effects avExposure, etc.; Greenan 2015).

6 Multilevel network analysis (meta analysis approach)
(function <siena08>; Snijders & Baerveldt, J.Math.Soc. 2003).

7 Random effects multilevel network models
(function <sienaBayes>; Koskinen, Snijders).

8 Continuous dependent behaviour variables (Niezink).

9 Larger networks, dropping assumption of complete information
(settings model; Preciado/Snijders).
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Conclusion

Further study – keeping updated

1 The version of RSiena at CRAN is not so frequently updated;
check website - News whether the R-Forge version is preferable.

2 Basic tutorial: Tom A.B. Snijders, Gerhard G. van de Bunt, Christian
E.G. Steglich (2010), Introduction to actor-based models for network
dynamics. Social Networks, 32, 44–60.

3 The manual (available from website) has a lot of material.

4 Go through the website to see what’s there:
http://www.stats.ox.ac.uk/siena/

For example, many useful scripts!

5 There is also a user’s group:
https://groups.io/g/RSiena
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