# Statistical Methods for Social Network Dynamics

**B:** Estimation and Testing

Tom A.B. Snijders



University of Groningen University of Oxford

February 2023



#### **Estimation**

Suppose that at least 2 observations on X(t) are available, for observation moments  $t_1$ ,  $t_2$ . (Extension to more than 2 observations is straightforward.)

How to estimate  $\theta$ ?

Condition on  $X(t_1)$ :

the first observation is accepted as given, contains in itself no observation about  $\theta$ .

No assumption of a stationary network distribution.

Thus, simulations start with  $X(t_1)$ .



## **Estimation Principle: Method of Moments**

Choose a suitable statistic  $Z = (Z_1, \ldots, Z_K)$ , i.e., K variables which can be calculated from the network; the statistic Z must be *sensitive* to the parameter  $\theta$  in the sense that higher values of  $\theta_k$  lead to higher values of the expected value  $\mathsf{E}_{\theta}(Z_k)$ ; denote its observed outcome by z;

determine value  $\hat{\theta}$  of  $\theta = (\rho, \beta)$  for which observed and expected values of suitable Z statistic are equal:

$$E_{\hat{\theta}} \{Z\} = z$$
.

This is a classical estimation principle in statistics: the *Method of Moments ('MoM')*.



#### Questions:

- What is a suitable (K-dimensional) statistic?
   Corresponds to objective function.
- How to find this value of  $\theta$ ? By stochastic approximation (Robbins-Monro process) based on repeated simulations of the dynamic process, with parameter values getting closer and closer to the moment estimates.



#### Suitable statistics for method of moments

Assume first that  $\lambda_i(x) = \rho = \theta_1$ , and 2 observation moments.

This parameter determines the expected "amount of change".

A sensitive statistic for  $\theta_1 = \rho$  is

$$C = \sum_{\substack{i,j=1\\i\neq j}}^{g} |X_{ij}(t_2) - X_{ij}(t_1)|,$$

the "observed total amount of change".



For the weights  $\beta_k$  in the evaluation function

$$f_i(\beta, x) = \sum_{k=1}^L \beta_k \, s_{ik}(x),$$

a higher value of  $\beta_k$  means that all actors strive more strongly after a high value of  $s_{ik}(x)$ , so  $s_{ik}(x)$  will tend to be higher for all i, k.

This leads to the statistic

$$S_k = \sum_{i=1}^n s_{ik}(X(t_2)) .$$

This statistic will be sensitive to  $\beta_k$ : a higher  $\beta_k$  will to lead to higher values of  $S_k$ .



Moment estimation will be based on the vector of statistics

$$Z = (C, S_1, ..., S_{K-1})$$
.

Denote by z the observed value for Z.

The moment estimate  $\hat{\theta}$  is defined as the parameter value for which the expected value of the statistic is equal to the observed value:

$$\mathsf{E}_{\widehat{\theta}}\left\{Z\right\} \,=\, z\;.$$



## Robbins-Monro algorithm

The moment equation  $E_{\hat{\theta}}\{Z\} = z$  cannot be solved by analytical or the usual numerical procedures, because

$$\mathsf{E}_{\theta}\{Z\}$$

cannot be calculated explicitly.

However, the solution can be approximated by the Robbins-Monro (1951) method for stochastic approximation.

Iteration step:

$$\hat{\theta}_{N+1} = \hat{\theta}_N - a_N D^{-1}(z_N - z) , \qquad (1)$$

where  $z_N$  is a simulation of Z with parameter  $\hat{\theta}_N$ , D is a suitable matrix, and  $a_N \to 0$ .



#### Covariance matrix

The method of moments yields the covariance matrix

$$\operatorname{\mathsf{cov}}(\hat{ heta}) pprox D_{ heta}^{-1} \, \Sigma_{ heta} \, D_{ heta}'^{\,-1}$$

where

$$\Sigma_{\theta} = \text{cov}\{Z | X(t_1) = x(t_1)\}$$

$$D_{\theta} = \frac{\partial}{\partial \theta} E\{Z | X(t_1) = x(t_1)\}.$$

Matrices  $\Sigma_{\theta}$  and  $D_{\theta}$  can be estimated from MC simulations with fixed  $\theta$ .



After the presumed convergence of the algorithm for approximately solving the moment equation, extra simulations are carried out

- (a) to check that indeed  $E_{\hat{\theta}}\{Z\} \approx z$ ,
- (b) to estimate  $\Sigma_{\theta}$ ,
- (c) and to estimate  $D_{\theta}$ using a score function algorithm (earlier algorithm used difference quotients and common random numbers).



#### Modified estimation method:

conditional estimation .

Condition on the observed numbers of differences between successive observations,

$$c_m = \sum_{i,i} |x_{ij}(t_{m+1}) - x_{ij}(t_m)|$$
.



For continuing the simulations do not mind the values of the time variable t, but continue between  $t_m$  and  $t_{m+1}$  until the observed number of differences

$$\sum_{i,j} |X_{ij}(t) - X_{ij}(t_m)|$$

is equal to the observed  $c_m$ .

This is defined as time moment  $t_{m+1}$ .

This procedure is a bit more stable; requires modified estimator of  $\rho_{\it m}$  .

In practice the differences are small.



## Implementation: function siena07

Estimation by the Method of Moments according to the Robbins-Monro algorithm is implemented in RSiena by the function <siena07>.

This function has many other features to obtain good convergence; see the manual and Siena\_algorithms.pdf at the SIENA website.

The options are set in a control object created by the function sienaAlgorithmCreate.

One of the options is the choice between MoM and ML; but MoM is computationally much more efficient.



#### Computer algorithm in <siena07> has 3 phases:

• brief phase for preliminary estimation of  $\partial E_{\theta} \{Z\}/\partial \theta$  for defining D;



#### Computer algorithm in <siena07> has 3 phases:

- brief phase for preliminary estimation of  $\partial E_{\theta} \{Z\}/\partial \theta$  for defining D;
- estimation phase with Robbins-Monro updates, where a<sub>N</sub> remains constant in subphases and decreases between subphases;

```
(Default nsub=4 subphases.)
```



#### Computer algorithm in <siena07> has 3 phases:

- brief phase for preliminary estimation of  $\partial E_{\theta} \{Z\}/\partial \theta$  for defining D;
- estimation phase with Robbins-Monro updates, where a<sub>N</sub> remains constant in subphases and decreases between subphases;

(Default nsub=4 subphases.)

 $\odot$  final phase where  $\theta$  remains constant at estimated value; this phase is for checking that

$$\mathsf{E}_{\hat{\theta}}\left\{Z\right\} pprox z$$
,

and for estimating  $D_{\theta}$  and  $\Sigma_{\theta}$  to calculate standard errors.

(Default n3=1000 runs; for publications, more required - e.g., 5000.)



Implementation: siena07

The three phases are made visible in the gui (graphical user interface) that is open during estimation (unless batch=TRUE in the options).

The current parameter values  $\hat{\theta}_N$  are shown (constant during Phases 1 and 3, changing during Phase 2) as well as the 'quasi auto-correlations' of parameters during Phase 2; negative values are a sign of being close to the final point.

If <siena07> is run with returnTheta=TRUE, then the parameter values obtained during Phase 3 are returned in the answer object.

This is used in script script\_traceRM.R at the 'RSiena scripts' webpage to show plots of the updated parameters in Phase 2.



## Convergence

After running the algorithm, the convergence must be checked before starting to interpret the results.

For each statistic  $Z_k$  used for estimation, we define

 $\bar{z}_{k.}$  = average of simulated values in Phase 3;

 $sd(z_{k\cdot}) = their standard deviation;$ 

 $z_k$  = the target value.

Ideally,

$$\bar{z}_{k} = z_k$$
 for all  $k$ .

The requirement for convergence is

$$\mathsf{tconv}_k = \frac{\left|\bar{z}_{k\cdot} - z_k\right|}{\mathsf{sd}(z_{k\cdot})} \leq 0.1 \text{ for all } k \ .$$



 $tconv_k$  is called the *t-ratio for convergence*, and is given in the table with estimation results.

A further criterion is that

tconv.max = 
$$\max_{w} \frac{\sum_{k} w_{k} (\bar{z}_{k \cdot} - z_{k})}{\operatorname{sd}(\sum_{k} w_{k} z_{k \cdot})} \leq 0.25$$
.

where the maximum is taken over all vectors w of weights of linear combinations of the  $Z_k$ .

tconv.max is called the overall maximum convergence ratio.



## Obtaining convergent estimation

The default settings of the estimation algorithm are such, that for most data sets and models, convergence is achieved in one run.

If the model is complicated given the information available in the data, and also if some highly correlated parameters are being estimated, it can be necessary to run the estimation again, using the previous estimates as new starting values: the *prevAns* option.

If this still is not successful: see next page.



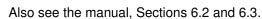
## Algorithm settings for continued estimation

When the initial value is close to the final estimate, the overall maximum convergence ratio depends on the length of the last subphase in Phase 2.

Further, its estimation has an upward bias, which becomes smaller for increasing length of Phase 3.

Therefore good Algorithm settings for continued estimation are:

- 1 nsub = 1 (only one subphase)
- 2 n2start = 'large' (length of first subphase; e.g., 2000 or more)
- n3 = 'large' (length of Phase 3; e.g., 3000 or more)
- 4 firstg = 0.01 (small steps)





## Extension: more periods

The estimation method can be extended to more than 2 repeated observations: observations x(t) for  $t = t_1, ..., t_M$ .

Parameters remain the same in periods between observations except for the basic rate of change  $\rho$  which now is given by  $\rho_m$  for  $t_m \leq t < t_{m+1}$ .

For the simulations, the simulated network X(t) is reset to the observation  $x(t_m)$  whenever the time parameter t passes the observation time  $t_m$ .

The statistics for the method of moments are defined as sums of appropriate statistics calculated per period  $(t_m, t_{m+1})$ .



A special property of the SAOM is that the interpretation of the parameters of the objective function is not affected by the number of waves (2 or more); for more periods (a period is the interval between two waves) the only things added are the rate parameters per period.

However, for two or more periods, it is necessary to check time homogeneity of the parameters (function sienaTimeTest).

Note that, even with constant = time homogeneous parameters, the network still may be systematically changing; this depends on the combination of parameters with the initial network.



### Maximum Likelihood estimation

For Maximum Likelihood estimation, see the script *Maximum Likelihood Estimation in RSiena* 

```
https:
//www.stats.ox.ac.uk/~snijders/siena/MaxLike RSiena.pdf
```

/www.stats.ox.ac.uk/~siiijdeis/sielia/Maxiike\_ksielia.pd



#### **Tests**

Parameters can be tested in the regular way, i.e., by the *t*-ratio

$$t_k = \frac{\hat{\beta}_k}{s.e.(\hat{\beta}_k)},$$

which can be referred to the standard normal null distribution.

If parameters are estimated by Maximum Likelihood, statisticians call this a Wald test<sup>1</sup>. Since usually in RSiena, parameters are estimated by the Method of Moments, we call this a Wald-type test.



<sup>&</sup>lt;sup>1</sup>Abraham Wald, 1902-1950

## Multiparameter tests

The Wald principle can also be used for multi-parameter tests to test that several parameters together are 0 (or equal to a different hypothesized value).

This test is given by the function <multipar.RSiena>; more generally, to test linear combinations, by <Wald.RSiena>. The special case of testing equality of parameters is <testSame.RSiena>.

Multiparameter tests are of practical importance because often there are high correlations between parameter estimates, and also because network concepts sometimes are represented by several effects taken together.



Tests

## Score-type tests

The *score-type test* is a test that operates without estimating the parameter.

This can be useful because estimation in RSiena is time-consuming, and also because sometimes estimation of an effect leads to instability of the estimation algorithm.

The score-type test for an effect is obtained by specifying

in the specification by <setEffect> or <includeEffects>.

Score-type tests can be used in an exploration phase. and also to check that parameters which are thought not to be important, and expected to be non-significant, indeed are not significant.



For an answer object ans produced by <siena07> in this way,

score. Test (ans)

will show the score test for all tested parameters simultaneously.

See the help page for <score.Test> for ways to get one-parameter or multi-parameter score tests for selected sets of tested parameters.

