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1. Robbins-Monro procedure

Robbins-Monro procedure
The Robbins-Monro procedure, proposed originally in 1951
by Herbert Robbins and Sutton Monro,
is a procedure to solve equations of the kind

f (θ) = 0

for functions f (θ) that cannot be calculated,
but that can be stochastically simulated with error;
for example, the median lethal dose of a poison.

That is, we can simulate random variables X (θ) for which

E
{

X (θ)
}

= f (θ) ;

and we wish to solve the equation

E
{

X (θ)
}

= 0 .
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1. Robbins-Monro procedure

The Robbins Monro procedure has been
much further developed since 1951;
it is the workhorse in the RSiena package
for computing estimates in stochastic actor-oriented models
according to the Method of Moments.

To define it, denote the data (observed networks etc.) by x
and assume that x is the outcome of the random process X .

Denote the parameter of the probability model by

θ = (θ1, θ2, . . . , θK ) .
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1. Robbins-Monro procedure

Method of Moment Estimation
For each θk we determine a statistic zk (x),
for which the distribution of zk (X ) reflects the value of θk ;
this means that if the value of θk gets higher,
then the outcomes of zk (X ) tend to show higher values.

These are arranged in the vector z(x) =
(
z1(x), z2(x), . . . , zK (x)

)
.

The parameter estimate θ̂
is defined as the solution of the equation

Eθ̂

{
z(X )

}
= z(x) ‘expected = observed’

So the function f (θ) mentioned above is

f (θ) = Eθ

{
z(X )

}
− z(x) .
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1. Robbins-Monro procedure

The Robbins-Monro procedure is an iterative algorithm:

if the current value of θ is θ̂(N),
we simulate the random process

X (N) ∼ model corresponding to θ̂(N)

and we update the parameter

θ̂(N+1) = θ̂(N) − aN D−1(z(X (N))− z(x)
)
.

aN is a sequence with aN ↓ 0,
D is a matrix indicating the sensitivity of Eθ

{
z(X )

}
to θ.

‘If the simulated zk (X (N)) is too large (small),
decrease (increase) θk .’
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2. Variance reduction

So the idea is, for solving
f (θ) = 0 ,

to replace the function f (θ)
by a random variable that has f (θ) as expected value:
we use a Monte Carlo simulation method to approximate f (θ).

This will go better
when the variance of the random variable is smaller.

The art of computer simulation knows a large variety of methods
to improve the efficiency of the simulation process
— i.e., work with a smaller error variance.

These were once known affectionately as swindles.
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2. Variance reduction

Swindle: regression method

A useful swindle is the regression method:

When estimating an expected value E
(
zk (X )

)
by simulation,

if you can find a random variable Uk , correlated with zk (X ),
and for which E

(
Uk
)
= 0,

then calculate the regression coefficient βk of zk (X ) on Uk

and subtract the prediction of zk (X ) based on Uk :

E
{

zk (X ) − βk Uk
}

= E
{

zk (X )
}

= fk (θ)

so this does not affect the estimated value
and decreases the variance.
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2. Variance reduction

In statistical modeling,
a well-known function with expected value 0
is the score function with coordinates

Jk (x , θ) =
∂

∂θk
log
(
pθ(x)

)
,

where pθ(x) is the probability (density) function of X
and θk is one of the coordinates of θ.

For the stochastic actor-oriented model,
the score function is too complicated to be computed.

However, in RSiena we do calculate the score function for the
augmented data, i.e., the data including all the ministeps.

The ministeps cannot be observed, but this does not matter –
they are simulated.
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2. Variance reduction

‘Dolby’ noise reduction

Denote by X̃ the augmented data (i.e., including the ministeps) and by

Jk (X̃ , θ)

the score function of the augmented data w.r.t. θk .

Then the modified Robbins-Monro method has update step

θ̂(N+1) = θ̂(N) − aN D−1
(

z(X (N))− βJ(X̃ (N), θ̂(N))− z(x)
)

where β = (β1, β2, . . . , βK ) and βk is an estimate
for the regression coefficient of zk (X ) on Jk (X̃ , θ).

The variance of this update is smaller,
which should make the algorithm more stable.
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2. Variance reduction

Implementation in RSiena
The correlation between zk (X ) and Jk (X̃ , θ) is relatively high
(because the zk (X ) are indeed good statistics for the MoM).

Therefore, only the univariate regressions of zk (X ) on Jk (X̃ , θ)
(same k ) are used.

The following steps are added to the phases of the Siena algorithm:

Phase 1: Calculate β1, β2, . . . , βK as the regression coefficients in
the sample of Phase 1 (for initial value of θ).

Phase 2: Use the modified update steps in each step of Phase 2.

Phase 3: Recalculate β1, β2, . . . , βK in the larger sample of Phase 3,
for the final value of θ,
for possible use in a next estimation run (‘prevAns’).
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2. Variance reduction

Another alteration: estimation of D

We study this together with another alteration to the algorithm,
an improved matrix D.

Recall the Robbins-Monro update :

θ̂(N+1) = θ̂(N) − aN D−1(z(X (N))− z(x)
)
.

where D is a matrix approximating

∂Eθ

{
z(X )

}
∂θ

.

Asymptotically, by estimating θ not by the last θ̂(N)

but by a “tail average” of this sequence,
a wide range of D will yield good results.
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2. Variance reduction

The current algorithm uses a Monte Carlo estimate D̂(1) of

∂Eθ

{
z(X )

}
∂θ

calculated in Phase 1 of the algorithm for the initial value of θ.
To achieve stability of the algorithm,
D is then calculated as the diagonal matrix of this matrix of derivatives:

D = diag D̂(1) .

Diagonalizing sacrifices some efficiency for stability.

The second alteration to the algorithm is
using only a partial diagonalization:

D =
1
2

D̂(1) +
1
2

diag D̂(1) .
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3. Simulation study

Simulation study
To investigate the properties of these variance reduction techniques,
a simulation study was made:

⇒ Only network dynamics, with one covariate.

⇒ Only 2 waves.

⇒ n (number of actors): 30 and 100.

⇒ A simple and a more complex model specification.

⇒ Start with a random network; then simulate the model with rate
parameter = 20; collect wave 1; then simulate the model again,
and collect wave 2.

⇒ Estimation under the correct model specification.

⇒ Repeated estimations, using ‘prevAns’, until convergence is good
as indicated by a maximal t-ratio for convergence of 0.10.
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3. Simulation study

So we have 4 studies (n = 30,100; 2 model specifications);

each study has a 2× 2 design:
Dolby yes/no × Half-diagonalize yes/no.

For each of these 16 combined specifications
we make 750 – 1,000 estimation runs for simulated data sets.

All models use an actor covariate V ,
distributed between –2 and +2, mean 0.
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3. Simulation study

Study 1: n = 30 actors, model specification:

1. basic rate parameter 5.0
2. outdegree –1.4
3. reciprocity 2.0
4. transitive triplets 0.4
5. 3-cycles –0.4
6. indegree - popularity (sqrt) –0.2
7. V similarity 0.6

Average degrees 5.8 (wave 1) and 6.7 (wave 2).
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3. Simulation study

When using Dolby
together with
Half Diagonalization,
average number of
estimation runs required
is halved.
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3. Simulation study

Bias is smaller for
Half Diagonalization.
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3. Simulation study

RMSE =
Root
Mean Squared Error

Half Diagonalization
gives a small
increase in RMSE
for outdegree
and indegree-pop.
parameters.
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3. Simulation study

Study 2: n = 30 actors, model specification:

1. basic rate parameter 5.0
2. outdegree –0.8
3. reciprocity 2.0
4. transitive triplets 0.3
5. 3-cycles –0.35
6. indegree - popularity (sqrt) –0.2
7. outdegree - activity (sqrt) –0.1
8. V alter 0.2
9. V ego 0.0

10. V ego × V alter 0.2

Average degrees 5.0 (wave 1) and 5.5 (wave 2).
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3. Simulation study

When using Dolby
together with
Half Diagonalization,
average number of
estimation runs required
is decreased by
factor 1.5.
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3. Simulation study

RMSE =
Root
Mean Squared Error

Half diagonalization
gives an
increase in RMSE
for outdegree
and indegree-pop.
parameters.
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3. Simulation study

Study 3: n = 100 actors, model specification:

1. basic rate parameter 5.0
2. outdegree –1.5
3. reciprocity 2.0
4. transitive triplets 0.4
5. 3-cycles –0.4
6. indegree - popularity (sqrt) –0.2
7. V similarity 0.6

Average degrees 5.7 (wave 1) and 6.0 (wave 2).
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3. Simulation study

When using Dolby
together with
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3. Simulation study
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3. Simulation study

Study 4: n = 100 actors, model specification:

1. basic rate parameter 6.0
2. outdegree –1.6
3. reciprocity 2.0
4. transitive triplets 0.2
5. 3-cycles –0.2
6. transitive ties 0.8
7. indegree - popularity (sqrt) –0.05
8. outdegree - popularity (sqrt) –0.2
9. outdegree - activity (sqrt) –0.2

10. out-out degree assortativity (sqrt) –0.0
11. in-in degree assortativity (sqrt) –0.0
12. V alter 0.2
13. V ego 0.0
14. V ego × V alter 0.2

Average degrees 5.1 (wave 1) and 5.6 (wave 2).
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3. Simulation study

When using Dolby
together with
Half Diagonalization,
average number of
estimation runs required
is decreased
by factor 1.7.
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3. Simulation study
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3. Simulation study

RMSE =
Root
Mean Squared Error

For several
parameters,
Dolby with
Half Diagonalization
gives a small
increase in RMSE.
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3. Simulation study

Discussion – summary

This study investigated the effects of two modifications
of the Robbins-Monro algorithm used for
Method of Moments parameter estimation in RSiena :

1 Variance reduction by regression on the score function;

2 Greater efficiency by not completely, but only half diagonalizing
the matrix of derivatives D.

These are modification of the update in the algorithm,
and are implemented without requiring additional computations.

The consequences were investigated by 4 simulation studies.
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3. Simulation study

Discussion – conclusions

⇒ The necessity to conduct additional estimation runs
to achieve convergence was strongly reduced.

⇒ There was a minor reduction of bias for some parameters.

⇒ There was a minor increase of RMSE for some parameters.

⇒ The latter two points suggest that convergence
still is incomplete, in spite of the stopping rule.

⇒ Further investigations are planned,
directed first at the gain factor aN , and for generalization.

⇒ Implemented in RSiena; ⇒ new default settings.

Tom A.B. Snijders Oxford & Groningen Variance Reduction for Robbins-Monro UK-SNA 2013 31 / 31



3. Simulation study

Discussion – conclusions

⇒ The necessity to conduct additional estimation runs
to achieve convergence was strongly reduced.

⇒ There was a minor reduction of bias for some parameters.

⇒ There was a minor increase of RMSE for some parameters.

⇒ The latter two points suggest that convergence
still is incomplete, in spite of the stopping rule.

⇒ Further investigations are planned,
directed first at the gain factor aN , and for generalization.

⇒ Implemented in RSiena; ⇒ new default settings.

Tom A.B. Snijders Oxford & Groningen Variance Reduction for Robbins-Monro UK-SNA 2013 31 / 31



3. Simulation study

Discussion – conclusions

⇒ The necessity to conduct additional estimation runs
to achieve convergence was strongly reduced.

⇒ There was a minor reduction of bias for some parameters.

⇒ There was a minor increase of RMSE for some parameters.

⇒ The latter two points suggest that convergence
still is incomplete, in spite of the stopping rule.

⇒ Further investigations are planned,
directed first at the gain factor aN , and for generalization.

⇒ Implemented in RSiena; ⇒ new default settings.

Tom A.B. Snijders Oxford & Groningen Variance Reduction for Robbins-Monro UK-SNA 2013 31 / 31



3. Simulation study

Discussion – conclusions

⇒ The necessity to conduct additional estimation runs
to achieve convergence was strongly reduced.

⇒ There was a minor reduction of bias for some parameters.

⇒ There was a minor increase of RMSE for some parameters.

⇒ The latter two points suggest that convergence
still is incomplete, in spite of the stopping rule.

⇒ Further investigations are planned,
directed first at the gain factor aN , and for generalization.

⇒ Implemented in RSiena; ⇒ new default settings.

Tom A.B. Snijders Oxford & Groningen Variance Reduction for Robbins-Monro UK-SNA 2013 31 / 31



3. Simulation study

Discussion – conclusions

⇒ The necessity to conduct additional estimation runs
to achieve convergence was strongly reduced.

⇒ There was a minor reduction of bias for some parameters.

⇒ There was a minor increase of RMSE for some parameters.

⇒ The latter two points suggest that convergence
still is incomplete, in spite of the stopping rule.

⇒ Further investigations are planned,
directed first at the gain factor aN , and for generalization.

⇒ Implemented in RSiena; ⇒ new default settings.

Tom A.B. Snijders Oxford & Groningen Variance Reduction for Robbins-Monro UK-SNA 2013 31 / 31



3. Simulation study

Discussion – conclusions

⇒ The necessity to conduct additional estimation runs
to achieve convergence was strongly reduced.

⇒ There was a minor reduction of bias for some parameters.

⇒ There was a minor increase of RMSE for some parameters.

⇒ The latter two points suggest that convergence
still is incomplete, in spite of the stopping rule.

⇒ Further investigations are planned,
directed first at the gain factor aN , and for generalization.

⇒ Implemented in RSiena; ⇒ new default settings.

Tom A.B. Snijders Oxford & Groningen Variance Reduction for Robbins-Monro UK-SNA 2013 31 / 31


	1. Robbins-Monro procedure
	2. Variance reduction
	3. Simulation study

