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These complements provide further details, and references which appeared (or came to my
attention) after the book was completed in June 1995. Minor corrections can be found in
the Errata list.

Chapter 1: Introduction

Page 4:
The book by Przytula & Prasanna (1993) discusses in detail the parallel implementation
of neural networks.

Page 16:
Langley (1996) provides a book-length introduction to one viewpoint on machine learn-
ing. Langley & Simon (1995) and Bratko & Muggleton (1995) discuss applications of
machine learning with claimed real-world benefits.

Valentin et al. (1994) survey recent developments in face recognition.

Arbib (1995) provides many short sketches of topics over a very wide range of neural
networks, both artificial and biological.

Chapter 2: Statistical Decision Theory

Page 41:
Lauritzen (1996, Chapter 6) gives an extensive treatment of conditional Gaussian dis-
tributions, and Edwards (1995) has a more practically-oriented account.

Page 65–66:
There has been a lot of interest in combining classifiers produced by the same method on
different training sets. Bagging (Breiman, 1994, Breiman, 1996a) is an abbreviation for
‘bootstrap aggregating’; the proposal is to take an unweighted average of the predictions
of, say 100, classifiers trained on training sets formed by resampling with replacement
from the original training set. Breiman (1996b) motivates this for unstable methods
such as classification trees in which a small change in the training set can lead to a large
change in the classifier. (‘Plug-in’ neural network fitting with multiple local minima
may also be unstable.)

A variant on this idea which has been suggested many times is to add ‘noise’ to the train-
ing set, randomly perturbing either the feature vectors x or the classes (or both). Further
along this line, we could model the joint distribution of (X, C) and create new training
sets from this distribution. Bagging can be seen as the rather extreme form of this pro-
cedure in which the model is the empirical distribution. Krogh & Vedelsby (1995) use
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cross-validation rather than re-sampling, and consider designing training sets weighted
towards areas where the existing classifiers are prone to disagree.)

Boosting (Schapire, 1990, Freund, 1990, Drucker et al., 1993, Drucker et al., 1994, Freund, 1995,
Freund & Schapire, 1995, Freund & Schapire, 1996a) is altogether more ambitious.
The idea is to design a series of training sets and use a combination of classifiers
trained on these sets. (Majority voting and linear combinations have both been used.)
The training sets are chosen sequentially, with the weights for each example being
modified based on the success of the classifier trained on the previous set. (The weight
of the examples which were classified incorrectly is increased relative to those which
were classified correctly.) For classifiers that do not accept weights on the examples,
resampling with probabilities proportional to the weights can be used.

There have been a number of practical tests of boosting, including Drucker (1996),
Drucker & Cortes (1996), Freund & Schapire (1996b), Breiman (1996c) and Quinlan (1996a).
Each of Freund & Schapire, Breiman and Quinlan compare bagging and boosting for
classification trees (although only Quinlan used weighting rather than weighted re-
sampling for boosting), and all find that boosting usually out-performs bagging but can
fail so badly as to make the boosted classifier worse that the original.

The original motivation for boosting was to produce a combined classifier that could
fit the training set perfectly by concentrating on the regions of the feature space which
the current classifier found hard. As both Breiman and Quinlan point out, this is a very
different aim from producing a classifier with good generalization in problems with
overlapping classes, a problem which requires boosting beyond the point needed to fit
the training set perfectly. It seems likely that greater study of boosting will lead to
algorithms designed to boost generalization error.

Cesa-Bianchi et al. (1993), Cesa-Bianchi et al. (1996) consider how to learn how to do
as well as the best of a class of classifiers over a sequence of examples, and derive
bounds for the excess errors made whilst learning which is best. This is a different
goal from the usual one in combining classifiers, which is to do better than even the
best classifier by exploiting the strengths of all. The algorithm used is boosting-like,
maintaining weights for each expert rather than each example.

Page 80:
Chernoff’s bound follows from the results of that paper, but in this precise form is due
to Angluin & Valiant (1979).

Page 82:
The constants in these results can be refined slightly by using probability inequalities
which are specific to binomial distributions. (One difficulty is that the references, like
Anthony & Shawe-Taylor, 1993, omit the proofs of these inequalities, which I find far
subtler than the ideas which are proved. The improvements were omitted because of
the lack of accessible proofs to which to refer the reader.)

In (2.50) the factor 1/8 in the exponent can be removed. Parrondo & Van der Broeck (1993)
give

Pr
{
sup
g∈F

|p̂mc(g)− pmc(g)| > ε
}
6 6e2ε∆(2n) exp[−nε2]

and Vapnik (1995, pp. 66, 85) quotes the constant 4 as in (2.50), although proofs are
deferred to the forthcoming Vapnik (1996).

The improvements of Parrondo & Van der Broeck rely on
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(i) Replacing (2.55) by

Pr{sup
g∈F

|η̂1 − η| > ε} 6 2 Pr{sup
g∈F

|η̂1 − η̂2| > ε− 1
n}.

This follows from the binomial inequality

Pr
{
±[

η̂2(ĝ) − η(ĝ)
]
6 1

n

∣∣∣ ĝ
}
> 1

2 (1)

for each choice of sign, and so, conditionally on the first sample

Pr{|η̂1(ĝ) − η̂2(ĝ)| > ε− 1
n}

6 Pr{η̂1(ĝ) > η + ε, η̂2(ĝ) < η + 1
n} + Pr{η̂1(ĝ) < η − ε, η̂2(ĝ) > η − 1

n}
6 1

2I{|η̂1(ĝ) − η| > ε}
Inequality (1) says that for a binomial distribution the median lies within one of
the mean; it seems well-known to combinatorists, none of whom was able to give
me a reference.

(ii) replacing the use of Hoeffding’s inequality at the top of page 87 by an inequality
of Vapnik (1982):

Pr
{∣∣∣

n∑
i=1

Yi

∣∣∣ > nε
}
6 3e−nε2 .

The bound for proposition 2.5 may be improved to 2∆(2n)2−nε by the same ideas.
(The statement in Parrondo & Van der Broeck, 1993, does not follow from their proof
and appears to be wrong.)

Chapter 3: Linear Discriminant Analysis

Page 116:
Analytical evidence that optimizing the number of errors made by a perceptron is hard
is provided by Höffgen et al. (1995) who showed that the problem of determining if
there is a solution with at most k > 1 misclassifications is NP-hard. (For k = 0 it
is reducible to a linear programming program as shown on this page, so solvable in
polynomial time.)

Page 118:
Minsky & Papert showed that the weights needed in a perceptron could be large for some
realistic problems. As for binary inputs the perceptron learning algorithm only changes
one coordinate of a by unity at each step, large weights entail slow convergence.

Prior to Minsky & Papert, Muroga et al. (1961) had shown that the weights in a linearly-
separating perceptron with n binary inputs could be chosen to be integers less than
(n+1)(n+1)/22−n, and Muroga (1965) showed that there were problems where integer
weights of Ω(2n)1 are required. Hampson & Volper (1986) showed that in some sense
an average problem needs integer weights of Ω(2n/2). More recently Håstad found
an example which needs integer weights at least as large as nn/22−neO(20.585). These
results are reviewed and proved by Parberry (1994).

Other learning rules are less restricted. We saw that Mansfield’s method makes at most
O(p3 log p) mistakes before finding a linearly separating solution, a bound reduced

1The notation Ω(g(n)) is defined on page 178.
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to O(p2 log p) by Maass & Turán (1994) by using a more recent method in convex
optimization. (They also show that every method makes at least

(p
2

)
mistakes are

necessary on some problems with p binary inputs.).

Page 120:
Support-vector machines (Cortes & Vapnik, 1995, Vapnik, 1995). If two classes are
linearly separable, there will be a continuum of weight vectors a which give rise to
separating hyperplanes. Amongst these we can choose a hyperplane with maximal
distance to the nearest example, achieved by minimizing ‖a‖2 whilst insisting that
za > 1. Finding this hyperplane is a quadratic programming problem, and the usual
Kuhn-Tucker optimality conditions show that there will be a subset of examples zi

(known as support vectors) for which zia = 1 and that the optimal a is a linear
combination of these zi.

The advantage is choosing the optimal hyperplane is to reduce the VC-dimension of
the space of solutions (which is proportional to a bound on ‖a‖2). If the two classes are
linearly separable then (Vapnik, 1995, Theorem 5.2) the expected error rate on future
examples is bounded by the expected number of support vectors divided by n − 1.
Thus finding a small number of support vectors might indicate good generalization
properties.

Of course, linear separation in the original feature space is quite rare, but as for
generalized linear discrimination (page 121) we can expand the feature space by using
polynomials or even radial-basis function networks and sigmoidal functions. These
can give rise to very large feature spaces, but generalization may remain acceptable if
the number of support vectors remains small, which was the case in the experiments
reported by Vapnik (1995, section 5.7).

By jointly minimizing the sum of the degree of error (page 116) and ‖a‖2 these ideas
can be extended to non-separable two-class problems (Cortes & Vapnik, 1995).

Chapter 4: Flexible Discriminants

Page 125:
Further examples of using additive models with interacxtion terms in logistic regression
are given by Wahba et al. (1995), Kooperberg et al. (1996) and Stone et al. (1997).

Chapter 5: Feed-forward Neural Networks

Page 157:
According to Werbos (1995), the weight-decay penalty

∑
ij w2

ij was also proposed by
Werbos (1987).

Page 165:
We saw that a local minimum which fits well is not important in the Bayesian in-
tegration if it corresponds to a sharp peak of the posterior density of the weights.
Hochreiter & Schmidhuber (1995), Hochreiter & Schmidhuber (1996) add a penalty to
the optimization to encourage exploring broad peaks. However, they still use local
optimization, and their penalty is better regarded as an elaborate form of weight decay.

Page 172:
Marchand et al. (1990) had another early construction algorithm.
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Page 179:
This VC-dimension result for threshold-unit neural networks was anticipated by Cover (1968).

Page 180:
The description of the O(W logW ) and Ω(W log W ) results fails to make clear what
is allowed to vary; these results apply to networks where both the number of input units
and the number of hidden units are allowed to increase. In that case Sakurai (1993)
has Ω(W logW ) results for networks with one hidden layer and real inputs (whereas
Maass considered binary inputs).

For sigmoidal neural networks, Karpinski & Macintyre (1995a), Karpinski & Macintyre (1995b)
showed that the VC-dimension is O(W 4)2, and Koiran & Sontag (1996) showed that
Ω(W 2). Bartlett & Williamson (1996) bound the VC-dimension for a single-hidden-
layer network by 2W log2(24e WD) if the inputs are restricted to {−D, . . . , D}.

Chapter 6: Non-parametric Methods

Page 197–198:
Lowe (1995) proposes a distance-weighted nearest-neighbour method with a Gaussian
kernel (exp−d2

j/σ2) where σ is proportional to the average distance to the, say, first 5
neighbours, and d2

j is weighted by weights for each feature. (Thus a quadratic metric
with diagonal A is used.) Both the constant of proportionality and the metric are
chosen by (leave-one-out) cross-validation. Like that of Fukunaga & Flick (1984) this
is a global method, but Lowe mentions that the feature weights could be chosen locally,
as was done by Atkeson (1991) in a control problem. The restriction to a diagonal
metric places the pre-processing of the features at a premium.

Friedman (1994) and Hastie & Tibshirani (1996a), Hastie & Tibshirani (1996b) look
for a local metric. Friedman works in the spirit of Short & Fukunaga (1980), Short & Fukunaga (1981),
using a local measure of relevance and choosing a hyper-rectangle (corresponding to
an L∞ distance with a diagonal weighting matrix) by recursive partitioning on this
relevance measure. The proposal of Hastie & Tibshirani is much simpler; they use
Euclidean distance on the linear discriminants for points within a small neighbourhood
(defined by this metric and so chosen recursively).

Page 200–201:
Further references on ‘memory-based reasoning’ are Waltz (1990), Aha et al. (1991),
Cost & Salzberg (1993) and Rachlin et al. (1994).

Chapter 7: Tree-structured Classifiers

Page 236–7:
Debate has continued in the machine-learning community on how to choose amongst at-
tributes at a split. Buntine & Niblett (1992) reviewed approaches at that time. More re-
cently, some authors have spotted (Catlett, 1991, Auer et al., 1995, Dougherty et al., 1995)
that discretizing a continuous attribute can improve the performance of a classification
tree induced by Quinlan’s C4.5 and rarely makes the performance worse. This might
arise since for a continuous attribute X the only splits allowed are of the form X 6 t,
whereas for a nominal attribute any split of the values into two groups is allowed, and

2with an explicit bound for a single-output network which has a leading term of (WM)2/2 where M is the
number of sigmoidal units

5



this can result in splitting a discretized continuous attribute into a series of intervals
and their complement. Indeed, Holte (1993) and Auer et al. (1995) have shown that
very shallow trees (one level or two levels respectively) can be rather effective on many
common problems if splits of this sort are allowed.

This has led to discussion of algorithms to find ‘efficient’ and ‘optimal’ multi-way splits
of continuous attributes (Fayyad & Irani, 1993, Fulton et al., 1995, Elomaa & Rousu, 1996).
The idea is to partition a continuous attribute into K > 2 disjoint intervals, and
have K daughter nodes, in such a way as to maximize the reduction in impurity.
(Elomaa & Rousu, 1996 point out errors and inefficiencies in the earlier algorithms.)

Quinlan (1996b) disputes whether this is the actual cause of the increased performance,
and proposes amendments to C4.5 which in his experiments regain its advantage over
discretization. There are several small changes, but the major effect is to introduce a
bias against continuous attributes, as the wide choice of threshold t gives a selection
bias in favour of continuous attributes. (If there are N values of X in the training set,
the information gain of X 6 t is reduced by log2(N − 1).)

Page 240:
There has been renewed interest in taking linear combinations of variables at nodes,
sometimes known as perceptron, neural, multivariate or oblique trees: Utgoff (1989),
Heath et al. (1993), Murthy et al. (1993), Murthy et al. (1994), Brodley & Utgoff (1995).

Page 241:
Craven & Shavlik (1996) consider using trees to ‘explain’ the classifier modelled by a
neural network, that is approximates a neural network by a classification tree, trained
by querying the neural network as an oracle. (This is related to Angluin’s ideas on
page 7.)

Page 242:
There has been further work on averaging multiple decision trees. One idea is to
replace the pruning of a tree by a weighted average over all prunings. Although
there are very many such prunings, averaging a prediction over prunings amounts to a
weighted average over potential terminal nodes (usually all nodes) and so is feasible; see
Willems et al. (1993), Willems et al. (1995), Oliver & Hand (1995), Helmbold & Schapire (1995)
and Helmbold & Schapire (1996). Other combination ideas are given by Ali & Pazzani (1995),
Ho (1995) and Shlien (1990).

Chapter 8: Belief Networks

Page 245:
Applications of Bayesian belief networks are considered in in the March 1995 issue of
Communications of the ACM by (Heckerman & Wellman, 1995, Burnell & Horvitz, 1995,
Heckerman et al., 1995, Fung & Del Favarro, 1995).

Page 245, 258–262:
Almond (1995) is a thesis-length treatment of graphical computations for Dempster-
Shafer belief functions, which have probability calculations as a special case. There are
many possible join trees, and Almond considers other constructionswhich may produce
trees better-suited to the computational complexity of belief-function computations.
Also, as belief functions do not have a division operator, the calculations have to be
organised to exclude the denominators from the product in the numerator.
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[Despite its claimed date, Almond’s book was published several months into 1996, with
1993 papers cited as ‘to appear’ in its references.]

Page 258–262:
Lauritzen (1996, Chapter 2) gives a self-contained account of these graph-theoretical
properties based on decomposability. Shafer (1996) gives an in-depth account of join
trees and the fine differences in the ways that they have been used in probabilistic expert
systems.

Chapter 9: Unsupervised Methods

Page 304:
The experiments of Wang & Oja (1993) comparing a five-layer auto-associator with
principal component analysis found that the latter gave better generalization.

Glossary

Page 354:
Benveniste et al. (1990) and Ljung et al. (1992) are books on stochastic approximation.
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