Time Series Solution Sketches Sheet 1 HT 2010

1. Let $\left\{X_{t}\right\}$ be the $\operatorname{ARMA}(1,1)$ process,

$$
X_{t}-\phi X_{t-1}=\epsilon_{t}+\theta \epsilon_{t-1}, \quad\left\{\epsilon_{t}\right\} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

where $|\phi|<1$ and $|\theta|<1$. Show that the acf of $\left\{X_{t}\right\}$ is given by

$$
\rho(1)=\frac{(1+\phi \theta)(\phi+\theta)}{1+\theta^{2}+2 \phi \theta}, \quad \rho(h)=\phi^{h-1} \rho(1) \quad \text { for } h \geqslant 1 .
$$

Solution: From $E\left(X_{t}\right)=\phi E\left(X_{t-1}\right)$, and using $\phi<1$ and stationarity we get $E\left(X_{t}\right)=E\left(X_{t-1}\right)=0$.
For $k \geqslant 2$: multiplying $X_{t}=\phi X_{t-1}+\epsilon_{t}+\theta \epsilon_{t-1}$ by X_{t-k} and taking expectations we get $\gamma_{k}=\phi \gamma_{k-1}$, and hence $\gamma_{k}=\phi^{k-1} \gamma_{1}$ for $k \geqslant 2$.
Multiplying the same equation by X_{t} and taking expectations we get

$$
\gamma_{0}=\phi \gamma_{1}+E\left[X_{t}\left(\epsilon_{t}+\theta \epsilon_{t-1}\right)\right]
$$

and

$$
\begin{aligned}
X_{t} & =\phi X_{t-1}+\epsilon_{t}+\theta \epsilon_{t-1}=\phi\left[\phi X_{t-2}+\epsilon_{t-1}+\theta \epsilon_{t-2}\right]+\epsilon_{t}+\theta \epsilon_{t-1} \\
& =\phi^{2} X_{t-2}+\phi \epsilon_{t-1}+\phi \theta \epsilon_{t-2}+\epsilon_{t}+\theta \epsilon_{t-1}
\end{aligned}
$$

so

$$
\begin{aligned}
\gamma_{0} & =\phi \gamma_{1}+E\left[\left(\phi^{2} X_{t-2}+\phi \epsilon_{t-1}+\phi \theta \epsilon_{t-2}+\epsilon_{t}+\theta \epsilon_{t-1}\right)\left(\epsilon_{t}+\theta \epsilon_{t-1}\right)\right] \\
& =\phi \gamma_{1}+\sigma^{2}\left[\phi \theta+1+\theta^{2}\right]
\end{aligned}
$$

Also

$$
\begin{aligned}
\gamma_{1} & =E\left(X_{t} X_{t+1}\right)=E\left[X_{t}\left(\phi X_{t}+\epsilon_{t+1}+\theta \epsilon_{t}\right)\right] \\
& =\phi \gamma_{0}+E\left[\left(\phi X_{t-1}+\epsilon_{t}+\theta \epsilon_{t-1}\right)\left(\epsilon_{t+1}+\theta \epsilon_{t}\right)\right]=\phi \gamma_{0}+\theta \sigma^{2}
\end{aligned}
$$

We can now solve the two equations involving γ_{0}, γ_{1}, and then find γ_{k}, and hence ρ_{k}, as required.
2. Consider a process consisting of a linear trend plus an additive noise term,

$$
X_{t}=\beta_{0}+\beta_{1} t+\epsilon_{t}
$$

where β_{0} and β_{1} are fixed constants, and where the ϵ_{t} are independent random variables with zero means and variances σ^{2}. Show that X_{t} is non-stationary, but that the first difference series $\nabla X_{t}=X_{t}-X_{t-1}$ is second-order stationary, and find the acf of ∇X_{t}.

Solution: $E\left(X_{t}\right)=E\left(\beta_{0}+\beta_{1} t+\epsilon_{t}\right)=\beta_{0}+\beta_{1} t$ which depends on t, hence X_{t} is non-stationary.
Let $Y_{t}=\nabla X_{t}=X_{t}-X_{t-1}$. Then

$$
Y_{t}=\beta_{0}+\beta_{1} t+\epsilon_{t}-\left\{\beta_{0}+\beta_{1}(t-1)+\epsilon_{t-1}\right\}=\beta_{1}+\epsilon_{t}-\epsilon_{t-1}
$$

So

$$
\begin{aligned}
\operatorname{cov}\left(Y_{t}, Y_{t+k}\right) & =\operatorname{cov}\left(\epsilon_{t}-\epsilon_{t-1}, \epsilon_{t+k}-\epsilon_{t+k-1}\right) \\
& =E\left(\epsilon_{t} \epsilon_{t+k}-\epsilon_{t-1} \epsilon_{t+k}-\epsilon_{t} \epsilon_{t+k-1}+\epsilon_{t-1} \epsilon_{t+k-1}\right) \\
& = \begin{cases}2 \sigma^{2} & k=0 \\
-\sigma^{2} & k=1 \\
0 & k \geqslant 2 .\end{cases}
\end{aligned}
$$

Hence Y_{t} is stationary and its acf is

$$
\rho_{k}== \begin{cases}1 & k=0 \\ -\frac{1}{2} & k=1 \\ 0 & k \geqslant 2\end{cases}
$$

3. Let $\left\{S_{t}, t=0,1,2, \ldots\right\}$ be the random walk with constant drift μ, defined by $S_{0}=0$ and

$$
S_{t}=\mu+S_{t-1}+\epsilon_{t}, \quad t=1,2, \ldots,
$$

where $\epsilon_{1}, \epsilon_{2}, \ldots$ are independent and identically distributed random variables with mean 0 and variance σ^{2}. Compute the mean of S_{t} and the autocovariance of the process $\left\{S_{t}\right\}$. Show that $\left\{\nabla S_{t}\right\}$ is stationary and compute its mean and autocovariance function.

Solution:

$$
\begin{aligned}
S_{t} & =\epsilon_{t}+\mu+S_{t-1}=\epsilon_{t}+\mu+\epsilon_{t-1}+\mu+S_{t-2} \\
& =\epsilon_{t}+\epsilon_{t-1}+2 \mu+S_{t-2}=\cdots=\sum_{j=0}^{t-1} \epsilon_{t-j}+t \mu+S_{0}
\end{aligned}
$$

So $E\left(S_{t}\right)=0+t \mu+0=t \mu$. Thus the mean depends on t, the process is not stationary.
For the autocovariance of S_{t}, the autocovariance at lag k is

$$
E\left[\left\{S_{t}-t \mu\right\}\left\{S_{t+k}-(t+k) \mu\right\}\right]=E\left(\sum_{j=0}^{t-1} \epsilon_{t-j} \sum_{i=0}^{t+k-1} \epsilon_{t+k-i}\right)=\sum_{j=0}^{t-1} E\left(\epsilon_{t-j} \epsilon_{t-j}\right)=t \sigma^{2}
$$

since, when moving from the first line to the second line of the above display, $E\left(\epsilon_{t-j} \epsilon_{t+k-i}\right)=0$ unless $i=j+k$.
Note: for $k=0, \ldots, t-1$,

$$
\begin{aligned}
\operatorname{Cov}\left(S_{t}, S_{t-h}\right) & =\operatorname{Cov}\left(\sum_{j=0}^{t-1} \epsilon_{t-j}, \sum_{i=0}^{t-h-1} \epsilon_{t-i}\right)=\sum_{j=0}^{t-1} \sum_{j=0}^{t-h-1} \operatorname{Cov}\left(\epsilon_{t-j}, \epsilon_{t-i}\right) \\
& =(t-h) \sigma^{2}
\end{aligned}
$$

$Y_{t}=\nabla S_{t}=S_{t}-S_{t-1}=\mu+\epsilon_{t}$, which is clearly stationary as the observations are independent; we have $E\left(Y_{t}\right)=\mu$ and $\operatorname{Var}\left(Y_{t}\right)=\sigma^{2}$.

For the autocovariance of Y_{t}, note $Y_{t}-\mu=\epsilon_{t}$, and similarly $Y_{t^{\prime}}-\mu=\epsilon_{t^{\prime}}$, and so for $t \neq t^{\prime}$ each Y_{t} depends on a different ϵ_{t}, and therefore $\operatorname{cov}\left(Y_{t}, Y_{t^{\prime}}\right)=0$ for all $t \neq t^{\prime}$. So the autocovariance function is σ^{2} at lag 0 , and is zero at all other lags.
4. If

$$
X_{t}=a \cos (\lambda t)+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$, and where a and λ are constants, show that $\left\{X_{t}\right\}$ is not stationary.
Solution: $E\left(X_{t}\right)=E\left(a \cos (\lambda t)+\epsilon_{t}\right)=a \cos (\lambda t)$, which depends on t, so X_{t} is not stationary.

