Time Series Problem Sheet 2 HT 2010

1. Consider the process

$$X_t = a\cos(\lambda t + \Theta)$$

where Θ is uniformly distributed on $(0, 2\pi)$, and where *a* and λ are constants. Is this process stationary? Find the autocorrelations and the spectrum of X_t .

[To find the autocorrelations you may want to use the identity $\cos \alpha \cos \beta = \frac{1}{2} \{\cos(\alpha + \beta) + \cos(\alpha - \beta)\}$.]

2. Find the Yule-Walker equations for the AR(2) process

$$X_t = \frac{1}{3}X_{t-1} + \frac{2}{9}X_{t-2} + \epsilon_t$$

where $\epsilon_t \sim WN(0, \sigma^2)$. Hence show that this process has autocorrelation function

$$o_k = \frac{16}{21} \left(\frac{2}{3}\right)^{|k|} + \frac{5}{21} \left(-\frac{1}{3}\right)^{|k|}$$

[To solve an equation of the form $a\rho_k + b\rho_{k-1} + c\rho_{k-2} = 0$, try $\rho_k = A\lambda^k$ for some constants A and λ : solve the resulting quadratic equation for λ and deduce that ρ_k is of the form $\rho_k = A\lambda_1^k + B\lambda_2^k$ where A and B are constants.]

- 3. Let $\{Y_t\}$ be a stationary process with mean zero and let a and b be constants.
 - (a) If $X_t = a + bt + s_t + Y_t$ where s_t is a seasonal component with period 12, show that $\nabla \nabla_{12} X_t = (1 B)(1 B^{12})X_t$ is stationary.
 - (b) If $X_t = (a+bt)s_t + Y_t$ where s_t is again a seasonal component with period 12, show that $\nabla_{12}^2 X_t = (1-B^{12})(1-B^{12})X_t$ is stationary.
- Consider the univariate state-space model given by state conditions X₀ = W₀, X_t = X_{t-1} + W_t, and observations Y_t = X_t + V_t, t = 1, 2, ..., where V_t and W_t are independent, Gaussian, white noise processes with var(V_t) = σ²_V and var(W_t) = σ²_W. Show that the data follow an ARIMA(0,1,1) model, that is, ∇Y_t follows an MA(1) model. Include in your answer an expression for the autocorrelation function of ∇Y_t in terms of σ²_V and σ²_W.