Time Series Practical 2 Hilary Term 2010 Prof. Reinert

In this practical we shall have a go at the Johnson & Johnson quarterly
earnings per share time series from lectures. The series is compiled of 84
observations (21 years) measured from the first quarter of 1960 to the last
quarter of 1980; a quarter is 3 months. The data are also discusses in the
book by Shumway and Stoffer, Time Series Analysis and Its Applications.

Download the data, called jj.dat, either from the course website or at
http://www.stat.pitt.edu/stoffer/tsa2/.

If you store the data in a directory called P:/, then use

jj<-scan("P:/jj.dat")

to read the data into R. To plot the data, you could use
jj<-ts(jj, start=1960, frequency=4)
ts.plot(jj)

Does this series look stationary? You could try a transformation such as
taking logs;

jj.log<-ts(log(jj), start=1960, frequency=4)

ts.plot(jj.log)

Is there a trend? Try for example differencing; jj.diff<-diff(jj.log).
Is there seasonality? Look at
par (mfrow=c(2,1))
acf(jj.diff)
pacf(jj.diff)

or at
spectrum(jj.diff)
spectrum(jj.diff, spans=c(3,5))

If you think that there may be annual periodicity, try jj.diff2<- diff(jj.diff,
lag=4). To use the Box-Jenkins approach for fitting a time series, look at
the acf and the pacf of the series. Then, for example if you think that an
MA model would be a good idea, then you could use for example
aicres<-c(1:14)
for(i in 1:14){ aicres[i]<- arima(jj.diff2, order=c(0,0,i),n.cond=15)
$aic }
aicres

Which model would you select? Check its diagnostic plots. For example,
if you choose an MA(13) model, then you could use
fit<- arima(jj.diff2, order=c(0,0,13))
tsdiag(fit)

Note that an MA(13) model may not be the best model; which criteria
do you use to choose a good model? Remember also that cpgram is the



command to give you a cumulative periodogram.
Once you have selected a model, you can check how well it forecasts
future values. To this purpose we shorten the time series by one year, and
see how well we can predict the last year. Put
years<-seq(1960, 1980+3/4, by=1/4)
jj.short<-jj.logl[1:80] years.short<-years[1:80]
and fit a model for the series jj.short using the above procedure (but
for the shorter time series). Write your model as a SARIMA model. For
example, if you difference once and then you take the 4-lag difference and
you find that the best fitting model is MA(13) (which may indeed not be
the model you find to fit best!) then you could use
orig.fit.short<-arima(jj.short, order=c(0,1,13), seasonal=list(order=c(0,1,0
), period=4 ), n.cond=4)
tsdiag(orig.fit.short)
to fit a SARIMA model to the data. Check the residuals; are you satisfied
with the model diagnostics? Note that this fit does not include an intercept.
Is the intercept significant in the model you have fitted, or could you fit a
model without the intercept also?
Using again an MA(13) fit, to plot the forecasts, you could use
fyears<-years[81:84]
pred.1<-predict(arima(jj.short, order=c(0,1,13), seasonal=list(order=c(0,1,0
), period=4 ), n.cond=4) , n.ahead=4)
pred.1
forecast.1<-pred.1$pred
flimits.1<-1.96* round(pred.1$se, 3)
and then
plot(years.short, jj.short, type="1", xlab="year", ylab="log earnings",
xlim=range (years))
lines(fyears, forecast.l, 1lwd=2)
lines(fyears, forecast.l + flimits.1, lty=2)
lines(fyears, forecast.l - flimits.1, 1lty=2)
and compare it to the original time series,
plot(jj.log, type="1l", xlab="year", ylab="log earnings", xlim=range(years))
lines(fyears, forecast.l, col="red")
lines(fyears, forecast.l + flimits.1l, 1ty=2, col="blue") lines(fyears,
forecast.1 - flimits.1, 1ty=2, col="blue")
Finally, to compare different models, you could calculate the mean squared
prediction error
mse<- mean ((exp(forecast.1) — exp(jj.log[81 : 84]))"2)



