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Overview

• Chapter 1:What are time series?Types of data, examples, objectives. Def-
initions, stationarity and autocovariances.

• Chapter 2:Models of stationary processes.Linear processes. Autoregres-
sive, moving average models, ARMA processes, the Backshift operator.
Differencing, ARIMA processes. Second-order properties. Autocorrelation
and partial autocorrelation function. Tests on sample autorcorrelations.

• Chapter 3:Statistical Analyis.Fitting ARIMA models: The Box-Jenkins
approach. Model identification, estimation, verification.Analysis in the
frequency domain. Spectrum, periodogram, smoothing, filters.

• Chapter 4:State space models.Linear models. Kalman filters.

• Chapter 5: Nonlinear models. ARCH and stochastic volatility models.
Chaos.

Relevant books

1. P.J. Brockwell and R.A. Davis (2002).Introduction to Time Series and Fore-
casting. Springer.

2. P.J. Brockwell and R.A. Davis (1991).Time Series: Theory and methods.
Springer.

3. P. Diggle (1990).Time Series. Clarendon Press.

4. R.H. Shumway and D.S. Stoffer (2006).Time Series Analysis and Its Ap-
plications. With R Examples. 2nd edition.Springer.

5. R.L. Smith (2001)Time Series.At
http://www.stat.unc.edu/faculty/rs/s133/tsnotes.pdf
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6. W.N. Venables and B.D. Ripley (2002).Modern Applied Statistics with S.
Springer.

Lectures take place Mondays 11-12 and Thursdays 10-11, weeks 1-4, plus
Wednesday Week 1 at 11, andnot Thursday Week 3 at 10. There will be two
problem sheets, and two Practical classes Friday of Week 2 and Friday of Week
4 and there will be two Examples classes Tuesday 10-11 of Weeks 3 and 5. The
Practical in Week 4 will be assessed. Your marker for the problem sheets is Yang
Wu; the work is due Friday of Weeks 2 and 4 at 5 pm.

While the examples class will cover problems from the problemsheet, there
may not be enough time to cover all the problems. You will benefit most from the
examples class if you (attempt to) solve the problems on the sheet ahead of the
examples class.

Lecture notes are published athttp://www.stats.ox.ac.uk/~reinert/
timeseries/timeseries.htm. The notes may cover more material than the
lectures. The notes may be updated throughout the lecture course.

Time series analysis is a very complex topic, far beyond whatcould be covered
in an 8-hour class. Hence the goal of the class is to give a brief overview of the
basics in time series analysis. Further reading is recommended.

1 What are Time Series?

Many statistical methods relate to data which are independent, or at least uncorre-
lated. There are many practical situations where data mightbe correlated. This is
particularly so where repeated observations on a given system are made sequen-
tially in time.

Data gathered sequentially in time are called atime series.

Examples

Here are some examples in which time series arise:

• Economics and Finance

• Environmental Modelling

• Meteorology and Hydrology
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• Demographics

• Medicine

• Engineering

• Quality Control

The simplest form of data is a long-ish series of continuous measurements at
equally spaced time points.

That is

• observations are made at distinct points in time, these timepoints being
equally spaced

• and, the observations may take values from a continuous distribution.

The above setup could be easily generalised: for example, the times of obser-
vation need not be equally spaced in time, the observations may only take values
from a discrete distribution, . . .

If we repeatedly observe a given system at regular time intervals, it is very
likely that the observations we make will be correlated. So we cannot assume that
the data constitute a random sample. The time-order in whichthe observations
are made is vital.

Objectives of time series analysis:

• description - summary statistics, graphs

• analysis and interpretation - find a model to describe the time dependence
in the data, can we interpret the model?

• forecasting or prediction - given a sample from the series, forecast the next
value, or the next few values

• control - adjust various control parameters to make the series fit closer to a
target

• adjustment - in a linear model the errors could form a time series of cor-
related observations, and we might want to adjust estimatedvariances to
allow for this
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2 Examples: from Venables and Ripley, data from Diggle (1990)
lh: a series of 48 observations at 10-minute intervals on luteinizing hormone

levels for a human female

Time

lh
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deaths: monthly deaths in the UK from a set of common lung diseases for
the years 1974 to 1979
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dotted series = males, dashed = females, solid line = total
(We will not split the series into males and females from now on.)

1.1 Definitions

Assume that the seriesXt runs throughout time, that is(Xt)t=0,±1,±2,..., but is only
observed at timest = 1, . . . , n.
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So we observe(X1, . . . , Xn). Theoretical properties refer to the underlying
process(Xt)t∈Z.

The notationsXt andX(t) are interchangeable.
The theory for time series is based on the assumption of ‘second-order sta-

tionarity’. Real-life data are often not stationary: e.g. they exhibit a linear trend
over time, or they have a seasonal effect. So the assumptionsof stationarity below
apply after any trends/seasonal effects have been removed.(We will look at the
issues of trends/seasonal effects later.)

1.2 Stationarity and autocovariances

The process is calledweakly stationaryor second-order stationaryif for all inte-
gerst, τ

E(Xt) = µ

cov(Xt+τ , Xτ ) = γt

whereµ is constant andγt does not depend onτ .
The process isstrictly stationaryor strongly stationaryif

(Xt1 , . . . , Xtk) and (Xt1+τ , . . . , Xtk+τ )

have the same distribution for all sets of time pointst1, . . . , tk and all integersτ .

Notice that a process that is strictly stationary is automatically weakly station-
ary. The converse of this is not true in general.

However, if the process is Gaussian, that is if(Xt1 , . . . , Xtk) has a multivariate
normal distribution for allt1, . . . , tk, then weak stationarity does imply strong
stationarity.

Note thatvar(Xt) = γ0 and, by stationarity,γ−t = γt.

The sequence(γt) is called theautocovariance function.
Theautocorrelation function(acf) (ρt) is given by

ρt = corr(Xt+τ , Xτ ) =
γt

γ0

.

The acf describes the second-order properties of the time series.
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We estimateγt by ct, andρt by rt, where

ct =
1

n

min(n−t,n)∑

s=max(1,1−t)

[Xs+t − X][Xs − X] and rt =
ct

c0

.

• For t > 0, the covariancecov(Xt+τ , Xτ ) is estimated from then − t ob-
served pairs

(Xt+1, X1), . . . , (Xn, Xn−t).

If we take the usual covariance of these pairs, we would be using different
estimates of the mean and variances for each of the subseries(Xt+1, . . . , Xn)
and(X1, . . . , Xn−t), whereas under the stationarity assumption these have
the same mean and variance. So we useX (twice) in the above formula.

A plot of rt againstt is called thecorrelogram.
A series(Xt) is said to belaggedif its time axis is shifted: shifting byτ lags

gives the series(Xt−τ ).
So rt is the estimated autocorrelation at lagt; it is also called thesample

autocorrelation function.

lh: autocovariance function
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lh: autocorrelation function
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deaths: autocorrelation function
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2 Models of stationary processes

Assume we have a time series without trends or seasonal effects. That is, if nec-
essary, any trends or seasonal effects have already been removed from the series.

How might we construct a linear model for a time series with autocorrelation?

Linear processes

The process(Xt) is called alinear processif it has a representation of the form

Xt = µ +
∞∑

r=−∞

crǫt−r
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whereµ is a common mean,{cr} is a sequence of fixed constants and{ǫt} are
independent random variables with mean 0 and common variance.

We assume
∑

c2
r < ∞ to ensure that the variance ofXt is finite.

If the {ǫt} are identically distributed, then such a orocess is strictly stationary.
If cr = 0 for r < 0 it is said to becausal, i.e. the process at timet does not depend
on the future, as yet unobserved, values ofǫt.

The AR, MA and ARMA processes that we are now going to define are all
special cases of causal linear processes.

2.1 Autoregressive processes

Assume that a current value of the series is linearly dependent upon its previous
value, with some error. Then we could have the linear relationship

Xt = αXt−1 + ǫt

whereǫt is awhite noisetime series. [That is, theǫt are a sequence of uncorrelated
random variables (possibly normally distributed, but not necessarily normal) with
mean 0 and varianceσ2.]

This model is called anautoregressive(AR) model, sinceX is regressed on
itself. Here the lag of the autoregression is 1.

More generally we could have an autoregressive model of order p, an AR(p)
model, defined by

Xt =

p∑

i=1

αiXt−i + ǫt.

At first sight, the AR(1) process

Xt = αXt−1 + ǫt

is not in the linear formXt = µ +
∑

crǫt−r. However note that

Xt = αXt−1 + ǫt

= ǫt + α(ǫt−1 + αXt−2)

= ǫt + αǫt−1 + α2ǫt−2 + · · · + αk−1ǫt−k+1 + αkXt−k

= ǫt + αǫt−1 + α2ǫt−2 + · · ·
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which is in linear form.

If ǫt has varianceσ2, then from independence we have that

V ar(Xt) = σ2 + α2σ2 + · · · + α2(k−1)σ2 + α2kV ar(Xt−k).

The sum converges as we assume finite variance.

But the sum converges only if|α| < 1. Thus|α| < 1 is a requirement for the
AR(1) process to be stationary.

We shall calculate the acf later.

2.2 Moving average processes

Another possibility is to assume that the current value of the series is a weighted
sum of past white noise terms, so for example that

Xt = ǫt + βǫt−1.

Such a model is called amoving average(MA) model, sinceX is expressed as a
weighted average of past values of the white noise series.

Here the lag of the moving average is 1. We can think of the white noise
series as beinginnovationsor shocks: new stochastically uncorrelated information
which appears at each time step, which is combined with otherinnovations (or
shocks) to provide the observable seriesX.

More generally we could have a moving average model of orderq, an MA(q)
model, defined by

Xt = ǫt +

q∑

j=1

βjǫt−j.

If ǫt has varianceσ2, then from independence we have that

V ar(Xt) = σ2 +

q∑

j=1

β2
j σ

2.

We shall calculate the acf later.
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2.3 ARMA processes

An autoregressive moving average processARMA(p, q) is defined by

Xt =

p∑

i=1

αiXt−i +

q∑

j=0

βjǫt−j

whereβ0 = 1.
A slightly more general definition of an ARMA process incorporates a non-

zero mean valueµ, and can be obtained by replacingXt by Xt − µ andXt−i by
Xt−i − µ above.

From its definition we see that an MA(q) process is second-order stationary
for anyβ1, . . . , βq.

However the AR(p) and ARMA(p, q) models do not necessarily define second-
order stationary time series.

For example, we have already seen that for an AR(1) model we need the con-
dition |α| < 1. This is thestationarity conditionfor an AR(1) process. All AR
processes require a condition of this type.

Define, for any complex numberz, theautoregressive polynomial

φα(z) = 1 − α1z − · · · − αpz
p.

Then thestationarity conditionfor an AR(p) process is:

all the zeros of the functionφα(z) lie outside the unit circle in the complex plane.

This is exactly the condition that is needed on{α1, . . . , αp} to ensure that the
process is well-defined and stationary (seeBrockwell and Davis 1991), pp. 85-87.

2.4 The backshift operator

Define thebackshift operatorB by

BXt = Xt−1, B2Xt = B(BXt) = Xt−2, . . .

We include the identity operatorIXt = B0Xt = Xt.
Using this notation we can write the AR(p) processXt =

∑p
i=1 αiXt−i + ǫt as

(
I −

p∑

i=1

αiB
i

)
Xt = ǫt
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or even more concisely
φα(B)X = ǫ.

Recall that an MA(q) process isXt = ǫt +
∑q

j=1 βjǫt−j.
Define, for any complex numberz, themoving average polynomial

φβ(z) = 1 + β1z + · · · + βqz
q.

Then, in operator notation, the MA(q) process can be written

Xt =

(
I +

q∑

j=1

βjB
j

)
ǫt

or
X = φβ(B)ǫ.

For an MA(q) process we have already noted that there is no need for a station-
arity condition on the coefficientsβj, but there is a different difficulty requiring
some restriction on the coefficients.

Consider the MA(1) process

Xt = ǫt + βǫt−1.

As ǫt has mean zero and varianceσ2, we can calculate the autocovariances to be

γ0 = V ar(X0) = (1 + β2)σ2

γ1 = Cov(X0, X1)

= Cov(ǫ0, ǫ1) + Cov(ǫ0, βǫ0) + Cov(βǫ−1, ǫ1) + Cov(βǫ−1, βǫ0)

= Cov(ǫ0, βǫ0)

= βσ2,

γk = 0, k > 2.

So the autocorrelations are

ρ0 = 1, ρ1 =
β

1 + β2
, ρk = 0 k > 2.
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Now consider the identical process but withβ replaced by1/β. From above
we can see that the autocorrelation function is unchanged bythis transformation:
the two processes defined byβ and1/β cannot be distinguished.

It is customary to impose the followingidentifiability condition:

all the zeros of the functionφβ(z) lie outside the unit circle in the complex plane.

The ARMA(p, q) process

Xt =

p∑

i=1

αiXt−i +

q∑

j=0

βjǫt−j

whereβ0 = 1, can be written

φα(B)X = φβ(B)ǫ.

The conditions required are

1. the stationarity condition on{α1, . . . , αp}

2. the identifiability condition on{β1, . . . , βq}

3. an additional identifiability condition:φα(z) andφβ(z) have no common
roots.

Condition 3 is to avoid having an ARMA(p, q) model which can, in fact, be ex-
pressed as a lower order model, say as an ARMA(p − 1, q − 1) model.

2.5 Differencing

Thedifference operator∇ is given by

∇Xt = Xt − Xt−1

These differences form a new time series∇X (of lengthn−1 if the original series
had lengthn). Similarly

∇2Xt = ∇(∇Xt) = Xt − 2Xt−1 + Xt−2
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and so on.
If our original time series is not stationary, we can look at the first order dif-

ference process∇X, or second order differences∇2X, and so on. If we find that
a differenced process is a stationary process, we can look for an ARMA model of
that differenced process.

In practice if differencing is used, usuallyd = 1, or maybed = 2, is enough.

2.6 ARIMA processes

The processXt is said to be anautoregressive integrated moving average process
ARIMA( p, d, q) if its dth difference∇dX is an ARMA(p, q) process.

An ARIMA( p, d, q) model can be written

φα(B)∇dX = φβ(B)ǫ

or
φα(B)(I − B)dX = φβ(B)ǫ.

2.7 Second order properties of MA(q)

For the MA(q) processXt =
∑q

j=0 βjǫt−j, whereβ0 = 1, it is clear thatE(Xt) =
0 for all t.

Hence, fork > 0, the autocovariance function is

γk = E(XtXt−k)

= E

[
(

q∑

j=0

βjǫt−j)(

q∑

i=0

βiǫt−k−i)

]

=

q∑

j=0

q∑

i=0

βjβiE(ǫt−jǫt−k−i).

Since theǫt sequence is white noise,E(ǫt−jǫt−k−i) = 0 unlessj = i + k.

Hence the only non-zero terms in the sum are of the formσ2βiβi+k and we
have

γk =

{
σ2
∑q−|k|

i=0 βiβi+|k| |k| 6 q

0 |k| > q
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and the acf is obtained viaρk = γk/γ0.
In particular notice that the acf if zero for|k| > q. This ‘cut-off’ in the acf after

lagq is a characteristic property of the MA process and can be usedin identifying
the order of an MA process.

Simulation: MA(1) with β = 0.5
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Simulation: MA(2) with β1 = β2 = 0.5
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To identify an MA(q) process:
We have already seen that for an MA(q) time series, all values of the acf be-

yond lagq are zero: i.e.ρk = 0 for k > q.
So plots of the acf should show a sharp drop to near zero after theqth coeffi-

cient. This is therefore a diagnostic for an MA(q) process.
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2.8 Second order properties of AR(p)

Consider the AR(p) process

Xt =

p∑

i=1

αiXt−i + ǫt.

For this modelE(Xt) = 0 (why?).
Hence multiplying both sides of the above equation byXt−k and taking ex-

pectations gives

γk =

p∑

i=1

αiγk−i, k > 0.

In terms of the autocorrelationsρk = γk/γ0

ρk =

p∑

i=1

αiρk−i, k > 0

These are theYule-Walkerequations.
The population autocorrelationsρk are thus found by solving the Yule-Walker

equations: these autocorrelations are generally all non-zero.
Our present interest in the Yule-Walker equations is that wecould use them

to calculate theρk if we knew theαi. However later we will be interested in
using them to infer the values ofαi corresponding to an observed set of sample
autocorrelation coefficients.

Simulation: AR(1) with α = 0.5
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Simulation: AR(2) with α1 = 0.5, α2 = 0.25
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To identify an AR(p) process:
The AR(p) process hasρk decaying smoothly ask increases, which can be

difficult to recognize in a plot of the acf.
Instead, the corresponding diagnostic for an AR(p) process is based on a quan-

tity known as thepartial autocorrelation function(pacf).
The partial autocorrelation at lagk is the correlation betweenXt andXt−k

after regression onXt−1, . . . , Xt−k+1.
To construct these partial autocorrelations we successively fit autoregressive

processes of order1, 2, . . . and, at each stage, define the partial autocorrelation
coefficientak to be the estimate of the final autoregressive coefficient: soak is
the estimate ofαk in an AR(k) process. If the underlying process is AR(p), then
αk = 0 for k > p, so a plot of the pacf should show a cutoff after lagp.

The simplest way to construct the pacf is via the sample analogues of the Yule-
Walker equations for an AR(p)

ρk =

p∑

i=1

αiρ|k−i| k = 1, . . . , p

The sample analogue of these equations replacesρk by its sample valuerk:

rk =

p∑

i=1

ai,pr|k−i| k = 1, . . . , p
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where we writeai,p to emphasize that we are estimating the autoregressive coeffi-
cientsα1, . . . , αp on the assumption that the underlying process is autoregressive
of orderp.

So we havep equations in the unknownsa1,p, . . . , ap,p, which could be solved,
and thepth partial autocorrelation coefficient isap,p.

Calculating the pacf

In practice the pacf is found as follows.
Consider the regression ofXt onXt−1, . . . , Xt−k, that is the model

Xt =
k∑

j=1

aj,kXt−j + ǫt

with ǫt independent ofX1, . . . , Xt−1.
Given dataX1, . . . , Xn, least squares estimates of{a1,k, . . . , ak,k} are obtained

by minimising

σ2
k =

1

n

n∑

t=k+1

(
Xt −

k∑

j=1

aj,kXt−j

)2

.

Theseaj,k coefficients can be found recursively ink for k = 0, 1, 2, . . . .
Fork = 0: σ2

0 = c0; a0,0 = 0, anda1,1 = ρ(1).
And then, given theaj,k−1 values, theaj,k values are given by

ak,k =
ρk −

∑k−1
j=1 aj,k−1ρk−j

1 −∑k−1
j=1 aj,k−1ρj

aj,k = aj,k−1 − ak,kak−j,k−1 j = 1, . . . , k − 1

and then

σ2
k = σ2

k−1(1 − a2
k,k).

This recursive method is theLevinson-Durbinrecursion.
Theak,k value is thekth samplepartial correlation coefficient.
In the case of a Gaussian process, we have the interpretationthat

ak,k = corr(Xt, Xt−k | Xt−1, . . . , Xt−k+1).
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If the processXt is genuinely an AR(p) process, thenak,k = 0 for k > p.
So a plot of the pacf should show a sharp drop to near zero afterlagp, and this

is a diagnostic for identifying an AR(p).

Simulation: AR(1) with α = 0.5
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Simulation: AR(2) with α1 = 0.5, α2 = 0.25
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Simulation: MA(1) with β = 0.5
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Simulation: MA(2) with β1 = β2 = 0.5

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4

Lag

P
ar

tia
l A

C
F

Series  ma2.sim

Tests on sample autocorrelations

To determine whether the values of the acf, or the pacf, are negligible, we can
use the approximation that they each have a standard deviation of around1/

√
n.

So this would give±2/
√

n as approximate confidence bounds (2 is an approx-
imation to 1.96). In R these are shown as blue dotted lines.

Values outside the range±2/
√

n can be regarded as significant at about the
5% level. But if a large number ofrk values, say, are calculated it is likely that
some will exceed this threshold even if the underlying time series is a white noise
sequence.

Interpretation is also complicated by the fact that therk are not independently
distributed. The probability of any onerk lying outside±2/

√
n depends on the

values of the otherrk.
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3 Statistical Analysis

3.1 Fitting ARIMA models: The Box-Jenkins approach

The Box-Jenkins approach to fitting ARIMA models can be dividedinto three
parts:

• Identification;

• Estimation;

• Verification.

3.1.1 Identification

This refers to initial preprocessing of the data to make it stationary, and choosing
plausible values ofp and q (which can of course be adjusted as model fitting
progresses).

To assess whether the data come from a stationary process we can

• look at the data: e.g. a time plot as we looked at for thelh series;

• consider transforming it (e.g. by taking logs;)

• consider if we need to difference the series to make it stationary.

For stationarity the acf should decay to zero fairly rapidly. If this is not true,
then try differencing the series, and maybe a second time if necessary. (In practice
it is rare to go beyondd = 2 stages of differencing.)

The next step is initial identification ofp andq. For this we use the acf and the
pacf, recalling that

• for an MA(q) series, the acf is zero beyond lagq;

• for an AR(p) series, the pacf is zero beyond lagp.

We can use plots of the acf/pacf and the approximate±2/
√

n confidence bounds.
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3.1.2 Estimation: AR processes

For the AR(p) process

Xt =

p∑

i=1

αiXt−i + ǫt

we have the Yule-Walker equationsρk =
∑p

i=1 αiρ|i−k|, for k > 0.
We fit the parametersα1, . . . , αp by solving

rk =

p∑

i=1

αir|i−k|, k = 1, . . . , p

These arep equations for thep unknownsα1, . . . , αp which, as before, can be
solved using a Levinson-Durbin recursion.

The Levinson-Durbin recursion gives the residual variance

σ̂2
p =

1

n

n∑

t=p+1

(
Xt −

p∑

j=1

α̂jXt−j

)2

.

This can be used to guide our selection of the appropriate order p. Define an
approximate log likelihood by

−2 log L = n log(σ̂2
p).

Then this can be used for likelihood ratio tests.
Alternatively,p can be chosen by minimising AIC where

AIC = −2 log L + 2k

andk = p is the number of unknown parameters in the model.

If (Xt)t is a causal AR(p) process with i.i.d. WN(0, σ2
ǫ ), then (see Brockwell

and Davis (1991), p.241) then the Yule-Walker estimatorα̂ is optimal with respect
to the normal distribution.

Moreover (Brockwell and Davis (1991), p.241) for the pacf of acausal AR(p)
process we have that, form > p,

√
nα̂mm

is asymptotically standard normal. However, the elements of the vectorα̂m =
(α̂1m, . . . , α̂mm) are in general not asymptotically uncorrelated.
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3.1.3 Estimation: ARMA processes

Now we consider an ARMA(p, q) process. If we assume a parametric model for
the white noise – this parametric model will be that of Gaussian white noise – we
can use maximum likelihood.

We rely on theprediction error decomposition. That is,X1, . . . , Xn have joint
density

f(X1, . . . , Xn) = f(X1)
n∏

t=2

f(Xt | X1, . . . , Xt−1).

Suppose the conditional distribution ofXt given X1, . . . , Xt−1 is normal with
meanX̂t and variancePt−1, and suppose thatX1 ∼ N(X̂1, P0). (This is as for the
Kalman filter– see later.)

Then for the log likelihood we obtain

−2 log L =
n∑

t=1

{
log(2π) + log Pt−1 +

(Xt − X̂t)
2

Pt−1

}
.

Here X̂t and Pt−1 are functions of the parametersα1, . . . , αp, β1, . . . , βq, and
so maximum likelihood estimators can be found (numerically) by minimising
−2 log L with respect to these parameters.

The matrix of second derivatives of−2 log L, evaluated at the mle, is the ob-
served information matrix, and its inverse is an approximation to the covariance
matrix of the estimators. Hence we can obtain approximate standard errors for the
parameters from this matrix.

In practice, for AR(p) for example, the calculation is often simplified if we
condition on the firstm values of the series for some smallm. That is, we use a
conditional likelihood, and so the sum in the expression for−2 log L is taken over
t = m + 1 to n.

For an AR(p) we would use some small value ofm, m > p.

When comparing models with different numbers of parameters,it is important
to use the same value ofm, in particular when minimising AIC= −2 log L +
2(p + q). In R this corresponds to keepingn.cond in thearima command fixed
when comparing the AIC of several models.
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3.1.4 Verification

The third step is to check whether the model fits the data.
Two main techniques for model verification are

• Overfitting: add extra parameters to the model and use likelihood ratio ort
tests to check that they are not significant.

• Residual analysis: calculate residuals from the fitted modeland plot their
acf, pacf, ‘spectral density estimates’, etc, to check thatthey are consistent
with white noise.

3.1.5 Portmanteau test of white noise

A useful test for the residuals is the Box-Pierce portmanteautest. This is based on

Q = n
K∑

k=1

r2
k

whereK > p + q but much smaller thann, andrk is the acf of the residual series.
If the model is correct then, approximately,

Q ∼ χ2
K−p−q

so we can base a test on this: we would reject the model at levelα if Q >
χ2

K−p−q(1 − α).
An improved test is the Box-Ljung procedure which replacesQ by

Q̃ = n(n + 2)
K∑

k=1

r2
k

n − k
.

The distribution ofQ̃ is closer to aχ2
K−p−q than that ofQ.

Once we have a suitable model for the time series, we could apply it to es-
timate, say, a trend in a time series. For example, suppose that x1, . . . , xk are
explanatory variables, thatǫt is an ARMA(p,q)-process, and that we observe a
seriesyt. Our null model may then be that

Yt = µ + β1x1 + . . . + βkxk + ǫt, t = 1, . . . , T,
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and the alternative model could be

Yt = µ + ft(λ) + β1x1 + . . . + βkxk + ǫt, t = 1, . . . , T,

whereft(λ) is a function for the trend. Asǫt is ARMA, we can write down the
likelihoods under the two models, and then carry out a generalised likelihood ratio
test to assess whether the trend is significant.

For confidence intervals, assume that all errors are independently normally
distributed. Then we can estimate the covariance matrix forǫt using the Yule-
Walker equations; call this estimateV . Let X be theT × (k + 2) design matrix.
Then we estimate the covariance matrix of(µ̂, λ̂, β̂k) by

Σ̂ = (XT (σ̂2V )−1X)−1.

If σλ is the square root of the diagonal element inΣ̂ corresponding toλ, then
λ̂ ± σλtα/2 is a 100α-confidence interval forλ.

As an example, seeX.Zheng, R.E.Basher, C.S.Thompson: Trend detection in
regional-mean temperature series: Maximum, minimum, mean, diurnal range and
SST. In: Journal of Climate Vol. 10 Issue 2 (1997), pp. 317–326.

3.2 Analysis in the frequency domain

We can consider representing the variability in a time series in terms of harmonic
components at various frequencies. For example, a very simple model for a time
seriesXt exhibiting cyclic fluctuations with a known period,p say, is

Xt = α cos(ωt) + β sin(ωt) + ǫt

whereǫt is a white noise sequence,ω = 2π/p is the known frequency of the cyclic
fluctuations, andα andβ are parameters (which we might want to estimate).

Examining the second-order properties of a time series via autocovariances/autocorrelations
is ‘analysis in the time domain’.

What we are about to look at now, examining the second-order properties by
considering the frequency components of a series is ‘analysis in the frequency
domain’.
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3.2.1 The spectrum

Suppose we have a stationary time seriesXt with autocovariances(γk).
For any sequence of autocovariances(γk) generated by a stationary process,

there exists a functionF such that

γk =

∫ π

−π

eikλdF (λ)

whereF is the unique function on[−π, π] such that

1. F (−π) = 0

2. F is non-decreasing and right-continuous

3. the increments ofF are symmetric about zero, meaning that for0 6 a <
b 6 π,

F (b) − F (a) = F (−a) − F (−b).

The functionF is called thespectral distribution functionor spectrum. F has
many of the properties of a probability distribution function, which helps explain
its name, butF (π) = 1 is not required.

The interpretation is that, for0 6 a < b 6 π, F (b) − F (a) measures the
contribution to the total variability of the process withinthe frequency rangea <
λ 6 b.

If F is everywhere continuous and differentiable, then

f(λ) =
dF (λ)

dλ

is called thespectral density functionand we have

γk =

∫ π

−π

eikλf(λ)dλ.

It
∑ |γk| < ∞, then it can be shown thatf always exists and is given by

f(λ) =
1

2π

∞∑

k=−∞

γke
iλk =

γ0

2π
+

1

π

∞∑

k=1

γk cos(λk).
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By the symmetry ofγk, f(λ) = f(−λ).
From the mathematical point of view, the spectrum and acf contain equiv-

alent information concerning the underlying stationary random sequence(Xt).
However, the spectrum has a more tangible interpretation interms of the inherent
tendency for realizations of(Xt) to exhibit cyclic variations about the mean.

[Note that some authors put constants of2π in different places. For example,
some put a factor of1/(2π) in the integral expression forγk in terms ofF, f , and
then they don’t need a1/(2π) factor when givingf in terms ofγk.]

Example: WN(0, σ2)

Here,γ0 = σ2, γk = 0 for k 6= 0, and so we have immediately

f(λ) =
σ2

2π
for all λ

which is independent ofλ.
The fact that the spectral density is constant means that allfrequencies are

equally present, and this is why the sequence is called ‘white noise’. The converse
also holds: i.e. a process is white noise if and only if its spectral density is constant.

Note that the frequency is measured in cycles per unit time; for example, at
frequency1

2
the series makes a cycle every two time units. The number of time

periods to complete a cycle is 2. In general, for frequencyλ the number of time
units to complete a cycle is1

λ
.

Data which occurs at discrete time points will need at least two points to de-
termine a cycle. Hence the highest frequency of interest is1

2
.

The integral
∫ π

−π
eikλdF (λ) is interpreted as a so-called Riemann-Stieltjes in-

tegral. IfF is differentiable with derivativef , then
∫ π

−π

eikλdF (λ) =

∫ π

−π

eikλf(λ)dλ.

If F is such that

F (λ) =

{
0 if λ < λ0

a if λ ≥ λ0

then ∫ π

−π

eikλdF (λ) = aeikλ0 .
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The integral is additive; if

F (λ) =






0 if λ < λ0

a if λ0 ≤ λ < λ1

a + b if λ ≥ λ1

then
∫ π

−π

eikλdF (λ) =

∫ λ1

λ0

eikλdF (λ) +

∫ π

λ1

eikλdF (λ)

= aeikλ0 + (a + b − a)eikλ1

= aeikλ0 + beikλ1 .

Example: Consider the process

Xt = U1 sin(2πλ0t) + U2 cos(2πλ0t)

with U1, U2 independent, mean zero, varianceσ2 random variables. Then this pro-
cess has frequencyλ0; the number of time periods for the above series to complete
one cycle is exactly1

λ0

. We calculate

γh = E{U1 sin(2πλ0t) + U2 cos(2πλ0t))

×(U1 sin(2πλ0(t + h)) + U2 cos(2πλ0(t + h))}
= σ2{sin(2πλ0t) sin(2πλ0(t + h)) + cos(2πλ0t)) cos(2πλ0(t + h))}.

Now we use that

sin α sin β =
1

2
(cos(α − β) − cos(α + β))

cos α cos β =
1

2
(cos(α − β) + cos(α + β))

to get

γh =
σ2

2
(cos(2πλ0h) − cos(2πλ0(2t + h))

+ cos(2πλ0h) − + cos(2πλ0(2t + h)))

= σ2 cos(2πλ0h)

=
σ2

2

(
e−2πiλ0h + e2πiλ0h

)
.
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So, witha = b = σ2

2
, we use

F (λ) =






0 if λ < −λ0
σ2

2
if − λ0 ≤ λ < λ0

σ2 if λ ≥ λ0.

Example: AR(1):Xt = αXt−1 + ǫt.

Hereγ0 = σ2/(1 − α2) andγk = α|k|γ0 for k 6= 0.
So

f(λ) =
1

2π
γ0

∞∑

k=−∞

α|k|eiλk

=
γ0

2π
+

1

2π
γ0

∞∑

k=1

αkeiλk +
1

2π
γ0

∞∑

k=1

αke−iλk

=
γ0

2π

(
1 +

αeiλ

1 − αeiλ
+

αe−iλ

1 − αe−iλ

)

=
γ0(1 − α2)

2π(1 − 2α cos λ + α2)

=
σ2

2π(1 − 2α cos λ + α2)

where we usede−iλ + eiλ = 2 cos λ.

Simulation: AR(1) with α = 0.5
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AR (1) spectrum 
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Simulation: AR(1) with α = −0.5
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Series: ar1b.sim
AR (2) spectrum 

Plotting the spectral densityf(λ), we see that in the caseα > 0 the spectral
densityf(λ) is a decreasing function ofλ: that is, the power is concentrated at
low frequencies, corresponding to gradual long-range fluctuations.

For α < 0 the spectral densityf(λ) increases as a function ofλ: that is,
the power is concentrated at high frequencies, which reflects the fact that such a
process tends to oscillate.

ARMA(p, q) process

Xt =

p∑

i=1

αiXt−i +

q∑

j=0

βjǫt−j

The spectral density for an ARMA(p,q) process is related to the AR and MA
polynomialsφα(z) andφβ(z).

The spectral density ofXt is

f(λ) =
σ2

2π

|φβ(e−iλ)|2
|φα(e−iλ)|2 .
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Example: AR(1) Hereφα(z) = 1 − αz andφβ(z) = 1, so, for−π 6 λ < π,

f(λ) =
σ2

2π
|1 − αe−iλ|−2

=
σ2

2π
|1 − α cos λ + iα sin λ|−2

=
σ2

2π
{(1 − α cos λ)2 + (α sin λ)2}−1

=
σ2

2π(1 − 2α cos λ + α2)

as calculated before.

Example: MA(1)
Hereφα(z) = 1, φβ(z) = 1 + θz, and we obtain, for−π 6 λ < π,

f(λ) =
σ2

ǫ

2π
|1 + θe−iλ|2

=
σ2

ǫ

2π
(1 + 2θ cos(λ) + θ2).

Plotting the spectral densityf(λ), we would see that in the caseθ > 0 the
spectral density is large for low frequencies, small for high frequencies. This is
not surprising, as we have short-range positive correlation, smoothing the series.

For θ < 0 the spectral density is large around high frequencies, and small
for low frequencies; the series fluctuates rapidly about itsmean value. Thus, to a
coarse order, the qualitative behaviour of the spectral density is similar to that of
an AR(1) spectral density.

3.2.2 The Periodogram

To estimate the spectral density we use theperiodogram.
For a frequencyω we compute the squared correlation between the time series
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and the sine/cosine waves of frequencyω. The periodogramI(ω) is given by

I(ω) =
1

2πn

∣∣∣∣∣

n∑

t=1

e−iωtXt

∣∣∣∣∣

2

=
1

2πn




{

n∑

t=1

Xt sin(ωt)

}2

+

{
n∑

t=1

Xt cos(ωt)

}2


 .

The periodogram is related to the estimated autocovariancefunction by

I(ω) =
1

2π

∞∑

t=−∞

cte
−iωt =

c0

2π
+

1

π

∞∑

t=1

ct cos(ωt);

ct =

∫ π

−π

eiωtI(ω)dω.

So the periodogram and the estimated autocovariance function contain the same
information. For the purposes of interpretation, sometimes one will be easier to
interpret, other times the other will be easier to interpret.

Simulation: AR(1) with α = 0.5
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bandwidth = 0.000144

Simulation: AR(1) with α = −0.5
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Simulation: MA(1) with β = 0.5
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From asymptotic theory, atFourier frequenciesω = ωj = 2πj/n, j =
1, 2, . . . , the periodogram ordinates{I(ω1), I(ω2), . . . } are approximately inde-
pendent with means{f(ω1), f(ω2), . . . }. That is for theseω

I(ω) ∼ f(ω)E

whereE is an exponential distribution with mean 1.

Note thatvar[I(ω)] ≈ f(ω)2, which does not tend to zero asn → ∞. SoI(ω)
is NOT a consistent estimator.

Thecumulative periodogramU(ω) is defined by

U(ω) =
∑

0<ωk6ω

I(ωk) /

⌊n/2⌋∑

1

I(ωk).
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This can be used to test residuals in a fitted model, for example. If we hope that
our residual series is white noise, the the cumulative periodogram of the residuals
should increase linearly: i.e. we can plot the cumulative periodogram (in R) and
look to see if the plot is an approximate straight line.

If Xt, t = 0,±1,±2, . . . is Gaussian white noise, and ifωk = 2πk
n

are the
Fourier frequencies,−π < ωk ≤ π, then the random variables

∑i
k=1 I(ωk)∑q
k=1 I(ωk)

, r = 1, . . . , q − 1,

are distributed as the order statistics ofq − 1 independent random variables, each
being uniformly distributed on[0, 1].

As a consequence, we may apply a Kolmogorov-Smirnov test to assess whether
the residuals of a time series are white noise.

Example: Brockwell & Davis (p 339, 340): Data generated by

Xt = cos(πt/3) + ǫt t = . . . , 100

where{ǫt} is Gaussian white noise with variance 1. There is a peak in theperi-
odogram atω17 = 0.34π.

In addition, the independence of the periodogram ordinatesat different Fourier
frequencies suggests that the sample periodogram, as a function of ω, will be
extremely irregular. For this reason smoothing is often applied, for instance using
a moving average, or more generally a smoothing kernel.

3.2.3 Smoothing

The idea behind smoothing is to take weighted averages over neighbouring fre-
quencies in order to reduce the variability associated withindividual periodogram
values.

The main form of a smoothed esimator is given by

f̂(ω) =

∫
1

h
K

(
λ − ω

h

)
I(λ)dλ.

HereK is somekernel function(= a probability density function), for example a
standard normal pdf, andh is thebandwidth.
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The bandwidthh affects the degree to which this process smooths the peri-
odogram. Smallh = indictes a little smoothing, largeh = a lot of smoothing.

In practice, the smoothed esimatef̂(ω) will be evaluated by the sum

f̂(ω) =
∑

j

∫ ωj

ωj−1

1

h
K

(
λ − ω

h

)
I(λ)dλ

≈ 2π

n

∑

j

1

h
K

(
ωj − ω

h

)
I(ωj).

Writing

gj =
2π

hn
K

(
ωj − ω

h

)

we calculate that

E(f̂(ω)) ≈
∑

j

gjf(ωj)

and

V ar(f̂(ω)) ≈
∑

j

g2
j f(ωj)

2 ≈ 2π

nh
f(ω)2

∫
K(x)2dx

as well as

bias(f̂(ω)) ≈ f ′′(ω)

2
h2

∫
x2K(x)dx,

seeVenables and Ripley, p.408. Then
√

2bias(f̂(ω))/f ′′(ω)

is referred to as thebandwidthin R.
As the degree of smoothingh increases, the variance decreases but the bias

increases.

Example series:lh
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Suppose we have estimated the periodogram valuesI(ω1), I(ω2), . . . , where
ωj = 2πj/n, j = 1, 2, . . . .

An example of a simple way to smooth is to use a moving average,and so
estimateI(ωj) by

1

16
I(ωj−4) +

1

8
[I(ωj−3) + I(ωj−2) + · · · + I(ωj+3)] +

1

16
I(ωj+4).

Observe that the sum of the weights above (i.e. the1
16

s and the1
8
s) is 1.

Keeping the sum of weights equal to 1, this process could be modified by using
more, or fewer,I(ωk) values to estimateI(ωj).

Also, this smoothing process could be repeated.

If a series is (approximately) periodic, say with frequencyω0, then periodogram
will show a peak near this frequency.

It may well also show smaller peaks at frequencies2ω0, 3ω0, . . . .
The integer multiples ofω0 are called itsharmonics, and the secondary peaks

at these high frequencies arise because the cyclic variation in the original series is
non-sinusoidal. (So a situation like this warns against interpreting multiple peaks
in the periodogram as indicating the presence of several distinct cyclic mecha-
nisms in the underlying process.)

In R, smoothing is controlled by the optionspans to thespectrum function.
The unsmoothed periodogram (above) was obtained viaspectrum(lh). The

plots are on log scale, in units ofdecibels, that is, the plot is of10 log10 I(ω).
The smoothed versions below are

spectrum(lh, spans = 3)

spectrum(lh, spans = c(3,3))

spectrum(lh, spans = c(3,5))

In R, the default is to use themodified Daniell kernel. This kernel places half
the weights at the endpoints; the other half is distributed uniformly.

All of the examples, above and below, from Venables & Ripley.
V & R advise:

• trial and error needed to choose the spans;

• spans should be odd integers;

• use at least two, which are different, to get a smooth plot.
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lh: cumulative periodogram
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3.3 Model fitting using time and frequency domain

3.3.1 Fitting ARMA models

The value of ARMA processes lies primarily in their ability toapproximate a wide
range of second-order behaviour using only a small number ofparameters.

Occasionally, we may be able to justify ARMA processes in terms of the basic
mechanisms generating the data. But more frequently, they are used as a means
of summarising a time series by a few well-chosen summary statistics: i.e. the
parameters of the ARMA process.

Now consider fitting an AR model to thelh series. Look at the pacf:
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Fit an AR(1) model:

lh.ar1 <- ar(lh, F, 1)

The fitted model is:
Xt = 0.58Xt−1 + ǫt

with σ2 = 0.21.
One residual plot we could look at is

cpgram(lh.ar1$resid)

lh: cumulative periodogram of residuals from AR(1) model
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AR(1) fit to lh

Also try select the order of the model using AIC:
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lh.ar <- ar(lh, order.max = 9)

lh.ar$order

lh.ar$aic

This selects the AR(3) model:

Xt = 0.65Xt−1 − 0.06Xt−2 − 0.23Xt−3 + ǫt

with σ2 = 0.20.
The same order is selected when using

lh.ar <- ar(lh, order.max = 20)

lh.ar$order

lh: cumulative periodogram of residuals from AR(3) model
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AR(3) fit to lh

By default,ar fits by using the Yule-Walker equations.
We can also use
arima in library(MASS)

to fit these models using maximum likelihood. (Examples in Venables & Rip-
ley, and in the practical class)

The functiontsdiag produces diagnostic residuals plots. As mentioned in a
previous lecture, thep-values from the Ljung-Box statistic are of concern if they
go below 0.05 (marked with a dotted line on the plot).

lh: diagnostic plots from AR(1) model
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Standardized Residuals
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lh: diagnostic plots from AR(3) model
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3.3.2 Estimation and elimination of trend and seasonal components

The first step in the analysis of any time series is to plot the data.
If there are any apparent discontinuities, such as a sudden change of level, it

may be advisable to analyse the series by first breaking it into a homogeneous
segments.

We can think of a simple model of a time series as comprising

• deterministic components, i.e. trend and seasonal components

• plus a random or stochastic component which shows no informative pattern.

42



We might write such adecomposition modelas the additive model

Xt = mt + st + Zt

where

mt = trend component (or mean level) at timet;

st = seasonal component at timet;

Zt = random noise component at timet.

Here the trendmt is a slowly changing function oft, and if d is the number of
observations in a complete cycle thenst = st−d.

In some applications a multiplicative model may be appropriate

Xt = mtstZt.

After taking logs, this becomes the previous additive model.

It is often possible to look at a time plot of the series to spottrend and seasonal
behaviour. We might look for a linear trend in the first instance, though in many
applications non-linear trend is also of interest and present.

Periodic behaviour is also relatively straightforward to spot. However, if there
are two or more cycles operating at different periods in a time series, then it may
be difficult to detect such cycles by eye. A formal Fourier analysis can help.

The presence of both trend and seasonality together can makeit more difficult
to detect one or the other by eye.

Example: Box and Jenkins airline data. Monthly totals (thousands) of inter-
national airline passengers, 1949 to 1960.
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airpass.log <- log(AirPassengers)

ts.plot(airpass.log)
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We can aim to estimate and extract the deterministic componentsmt andst,
and hope that the residual or noise componentZt turns out to be a stationary
process. We can then try to fit an ARMA process, for example, toZt.

An alternative approach (Box-Jenkins) is to apply the difference operator∇
repeatedly to the seriesXt until the differenced series resembles a realization of a
stationary process, and then fit an ARMA model to the suitably differenced series.

3.3.3 Elimination of trend when there is no seasonal component

The model is
Xt = mt + Zt

where we can assumeE(Zt) = 0.

1: Fit a Parametric Relationship

We can takemt to be the linear trendmt = α0 + α1t, or some similar polyno-
mial trend, and estimatemt by minimising

∑
(Xt − mt)

2 with respect toα0, α1.
Then consider fitting stationary models toYt = Xt−m̂t, wherem̂t = α̂0+α̂1t.
Non-linear trends are also possible of course, saylog mt = α0 + α1k

t (0 <
k < 1), mt = α0/(1 + α1e

−α2t), . . .
In practice, fitting a single parametric relationship to an entire time series is

unrealistic, so we may fit such curves as these locally, by allowing the parameters
α to vary (slowly) with time.
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The resulting seriesYt = Xt − m̂t is thedetrended time series.

Fit a linear trend:
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The detrended time series:
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2: Smoothing

If the aim is to provide an estimate of the local trend in a timeseries, then we
can apply amoving average. That is, take a small sequence of the series values
Xt−q, . . . , Xt, . . . , Xt+q, and compute a (weighted) average of them to obtain a
smoothed series value at timet, saym̂t, where

m̂t =
1

2q + 1

q∑

j=−q

Xt+j.
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It is useful to think of{m̂t} as a process obtained from{X̂t} by application of
a linearfilter m̂t =

∑∞
j=−∞ ajXt+j, with weightsaj = 1/(2q + 1), −q 6 j 6 q,

andaj = 0, |j| > q.

This filter is a ‘low pass’ filter since it takes dataXt and removes from it the
rapidly fluctuating componentYt = Xt−m̂t, to leave the slowly varying estimated
trend termm̂t.

We should not chooseq too large since, ifmt is not linear, although the filtered
process will be smooth, it will not be a good estimate ofmt.

If we apply two filters in succession, for example to progressively smooth a
series, we are said to be using a convolution of the filters.

By careful choice of the weightsaj, it is possible to design a filter that will not
only be effective in attenuating noise from the data, but which will also allow a
larger class of trend functions.

Spencer’s 15-point filter has weights

aj = a−j |j| 6 7

aj = 0 |j| > 7

(a0, a1, . . . , a7) =
1

320
(74, 67, 46, 21, 3,−5,−6,−3)

and has the property that a cubic polynomial passes through the filter undistorted.

spencer.wts <- c(-3,-6,-5,3,21,46,67,74,67,46,21,3,-5,-6,-3)/320

airpass.filt <- filter(airpass.log, spencer.wts)

ts.plot(airpass.log, airpass.filt, lty=c(2,1))

Original series and filtered series using Spencer’s 15-point filter:
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Detrended series via filtering:
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3: Differencing

Recall that thedifference operatoris∇Xt = Xt−Xt−1. Note that differencing
is a special case of applying a linear filter.

We can think of differencing as a ‘sample derivative’. If we start with a linear
function, then differentiation yields a constant function, while if we start with a
quadratic function we need to differentiate twice to get to aconstant function.

Similarly, if a time series has a linear trend, differencingthe series once will
remove it, while if the series has a quadratic trend we would need to difference
twice to remove the trend.

Detrended series via differencing:
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3.4 Seasonality

After removing trend, we can remove seasonality. (Above, all detrended versions
of the airline data clearly still have a seasonal component.)

1: Block averaging
The simplest way to remove seasonality is to average the observations at the

same point in each repetition of the cycle (for example, for monthly data average
all the January values) and subtract that average from the values at those respective
points in the cycle.

2: Seasonal differencing
The seasonal difference operator is∇sXt = Xt − Xt−s wheres is the period

of the seasonal cycle. Seasonal differencing will remove seasonality in the same
way that ordinary differencing will remove a polynomial trend.

airpass.diff<-diff(airpass.log)

airpass.diff2 <- diff(airpass.diff, lag=12)

ts.plot(airpass.diff2)
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After differencing at lag 1 (to remove trend), then at lag 12 (to remove seasonal
effects), thelog(AirPassengers) series appears stationary.

That is, the series∇∇12X, or equivalently the series(1 − B)(1 − B12)X,
appears stationary.

R has a functionstl which you can use to estimate and remove trend and
seasonality using ‘loess’.
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stl is a complex function, you should consult the online documentation be-
fore you use it. The time series chapter of Venables & Ripley contains examples
of how to usestl. As with all aspects of that chapter, it would be a good idea for
you to work through the examples there.

We could now look to fit an ARMA model to∇∇12X, or to the residual
component extracted bystl.

Seasonal ARIMA models

Recall thatX is an ARMA(p, q) process if

Xt −
p∑

i=1

αiXt−i = ǫt +

q∑

j=1

βjǫt−j

andX is an ARIMA(p, d, q) process if∇dX is ARMA(p, q).
In shorthand notation, these processes are

φα(B)X = φβ(B)ǫ and φα(B)∇dX = φβ(B)ǫ.

Suppose we have monthly observations, so that seasonal patterns repeat every
s = 12 observations. Then we may typically expectXt to depend on such terms
asXt−12, and maybeXt−24, as well asXt−1, Xt−2, . . . .

A general seasonal ARIMA (SARIMA) model, is

Φp(B)ΦP (Bs)Y = Φq(B)ΦQ(Bs)ǫ

whereΦp, ΦP , Φq, ΦQ are polynomials of ordersp, P, q,Q and where

Y = (1 − B)d(1 − Bs)DX.

Here:

• s is the number of observations per season, sos = 12 for monthly data;

• D is the order of seasonal differencing, i.e. differencing atlag s (we were
content withD = 1 for the air passenger data);

• d is the order of ordinary differencing (we were content withd = 1 for the
air passenger data).
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This model is often referred to as an ARIMA((p, d, q) × (P,D,Q)s) model.

Examples

1. Consider a ARIMA model of order(1, 0, 0) × (0, 1, 1)12.
This model can be written

(1 − αB)Yt = (1 + βB12)ǫt

where
Yt = Xt − Xt−12.

2. The ‘airline model’ (so named because of its relevance to the air passenger
data) is a ARIMA model of order(0, 1, 1) × (0, 1, 1)12.

This model can be written

Yt = (1 + β1B)(1 + β2B
12)ǫt

whereYt = ∇∇12X is the series we obtained after differencing to reach sta-
tionarity, i.e. one step of ordinary differencing, plus onestep of seasonal (lag 12)
differencing.

3.5 Forecasting in ARMA models

As a linear time series, under our usual assumptions on the AR-polynomial and
the MA-polynomial, we can write an ARMA model as a causal model,

Xt =
∞∑

r=0

crǫt−r.

Suppose that we are interested in forecastingXT+k from observations{Xt, t ≤
T}. Consider forecasts of the form

X̂T,k =
∞∑

r=0

cr+kǫT−r.
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Then

XT+k − X̂T,k =
∞∑

r=0

crǫT+k−r −
∞∑

r=0

cr+kǫT−r

=
k−1∑

r=0

crǫT+k−r +
∞∑

r=k

crǫT+k−r −
∞∑

s=k

csǫT−s+k

=
k−1∑

r=0

crǫT+k−r.

This gives rise to the mean squared prediction error

E{(XT+k − X̂T,k)
2} =

(
k−1∑

r=0

c2
r

)
σ2

ǫ .

Thus

X̂T,k =
∞∑

r=0

cr+kǫT−r

is our theoretical optimal predictor.

Note that the mean squared prediction errors are based solely on the uncer-
tainty of prediction; they do not take errors in model identification into account.

In practice one usually uses a recursive approach. DefineX̂T,k to be the
optimal predictor ofXT+k given X1, . . . , XT ; for −T + 1 ≤ k ≤ 0, we set
X̂T,k = XT+k. Then use the recursive relation

X̂T,k =

p∑

r=1

αrX̂T,k−r + ǫ̂T+k +

q∑

s=1

βsǫ̂T+k−s

For k ≤ 0 we can use thus relation to calculateǫ̂t for 1 ≤ t ≤ T . Fork > 0 we
defineǫ̂t = 0 for t > T , to calculate the forecasts.

The difficulty is how to start off the recursion. Two standardsolutions are
Either assumeXt = ǫt = 0 for all t ≤ 0,
or forecast the series in reverse direction to determine estimates ofX0, X−1, . . . ,
as well asǫ0 = 0, ǫ−1 = 0, etc.
A superior approach is to recast the model in state space formand apply the
Kalman filter.
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4 State space models

State-space models assume that the observations(Xt)t are incomplete and noisy
functions of some underlying unobservable process(Yt)t, called thestate process,
which is assumed to have a simple Markovian dynamics. The general state space
model is described by

1. Y0, Y1, Y2, . . . is a Markov chain

2. Conditionally on{Yt}t, the Xt’s are independent, andXt depends onYt

only.

When the state variables are discrete, one usually calls thismodel ahidden Markov
model; the termstate space modelis mainly used for continuous state variables.

4.1 The linear state space model

A prominent role is played by the linear state space model

Yt = GtYt−1 + vt (1)

Xt = HtYt + wt, (2)

whereGt andHt are deterministic matrices, and(vt)t and(wt)t are two indepen-
dent white noise sequences withvt andwt being mean zero and having covariance
matricesV 2

t andW 2
t , respectively. The general case,

Yt = gt(Yt−1, vt)

Xt = ht(Yt, wt),

is much more flexible. Also, multivariate models are available. The typical ques-
tion on state space models is the estimation or the prediction of the states(Yt)t in
terms of the observed data points(Xt)t.

Example. Suppose the two-dimensional model

Yt =

(
0 1
0 0

)
Yt−1 +

(
1
β

)
Xt,

whereXt is one-dimensional mean zero white noise. Then

Y2,t = βXt

Y1,t = Y2,t−1 + Xt = Xt + βXt−1,
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so we obtain an MA(1)-process.

Example. Suppose the model

Yt = φYt−1 + vt

Xt = Yt + wt,

where(vt)t and(wt)t are two independent white noise sequences withvt andwt

being mean zero and having variancesV 2 andW 2, respectively. Then

Xt − φXt−1 = Yt − φYt−1 + wt − φwt−1

= vt + wt − φwt−1.

The right-hand side shows that all correlations at lags> 1 are zero. Hence
the right-hand side is equivalent to an MA(1) model, and thusXt follows an
ARMA(1,1)-model.

To make the connection with ARMA(1,1) more transparent, notethat

ǫt = vt + wt

gives a mean zero white noise series with varianceσ2
ǫ = V 2 + W 2. Thusǫt has

the same distribution as
√

V 2+W 2

W 2 wt. Putting

β = −
√

W 2

V 2 + W 2
φ

thus gives that

vt + wt − φwt−1 = ǫt + βǫt−1.

In fact any ARMA(p,q)-model with Gaussian WN can be formulated as a state
space model. The representation of an ARMA model as a state-space model is
however not unique, see Brockwell and Davis (1991), pp.469-470.

Note that the above model is more flexible than an ARMA model. If, for exam-
ple, the observation at timet is missing, then we simply putHt = (0, 0, . . . , 0)T .

53



4.2 Filtering, smoothing, and forecasting

The primary aims of the analysis of state space models are to produce estimators
for the underlying unobserved signalYt given the dataXs = (X1, . . . , Xs) up to
time s. Whens < t the problem is calledforecasting, whens = t it is called
filtering, and whens > t it is calledsmoothing. For a derivation of the results
below see also Smith (2001).

We will throughout assume the white noise to be Gaussian.

In Kalman filters made easyby Terence Tong, at
http://openuav.astroplanes.com/library/docs/writeup.pdf

an analogy of the following type is given.
Suppose that you just met a new friend and you do not know how punctual

your new friend will be. Based on your history, you estimate when the friend will
arrive. You do not want to come too early, but also you do not want to be too late.

You arrive on time at your first meeting, while your friend arrives 30 min late.
So you adapt your estimate, you will not be so early next time.

TheKalman filteris a method for updating parameter estimates instantly when
a new observation occurs, based on the likelihood of the current data - without
having to re-estimate a large number of parameters using allpast data.

The Kalman filter was first developed in an engineering framework, and we
shall use it for filtering and forecasting. It is a recursive method to calculate a con-
ditional distribution within a multivariate normal framework. As it is recursive,
only the estimated state from the previous time step and the current measurement
are needed to compute the estimate for the current state.

The state of the filter is represented by two variables: the estimate of the state
at time t; and the error covariance matrix (a measure of the estimated accuracy of
the state estimate). The Kalman filter has two distinct phases: Predict and Update.
The predict phase uses the state estimate from the previous timestep to produce
an estimate of the state at the current timestep. In the update phase, measurement
information at the current timestep is used to refine this prediction to arrive at a
new, (hopefully) more accurate state estimate, again for the current timestep.

It is useful to first revise some distributional results for multivariate normal
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distributions. Suppose that
(

Z1

Z2

)
∼ MVN

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (3)

Then the conditional distribution ofZ1 givenZ2 = z2 is

L(Z1|Z2 = z2) = MVN
(
µ1 + Σ12Σ

−1
11 (z2 − µ2), Σ11 − Σ12Σ

−1
11 Σ21

)
(4)

and conversely, ifZ2 ∼ MVN (µ2, Σ22) and if (4) holds, then (3) holds.

In particular, the conditional distribution ofZ1 givenZ2 = z2 is again normal,
and we can give its mean and its covariance matrix explicitly.

If Z1, Z2, Z3 are jointly normally distributed with meansµp and covariance
matricesΣpq = E[(Zp −µp)(Zq −µq)

′], for p, q = 1, 2, 3, and assume thatµ3 = 0
andΣ23 = 0. Then

E(Z1|Z2, Z3) = E(Z1|Z2) + Σ13Σ
−1
33 Z3

and

V ar(Z1|Z2, Z3) = V ar(Z1|Z2) − Σ13Σ
−1
33 Σ′

13.

To illustrate how the filter works, we first look at a one-dimensional example.
Let X(t−1) = {x1, . . . , xt−1} be the set of past observations from a time seriesX

which arises in the state space model

Xt = Yt + ǫt

Yt = Yt−1 + ηt−1,

whereǫt is mean-zero normal with varianceσ2
ǫ andηt is mean-zero normal with

varianceσ2
η; all independent.

Assume that the conditional distribution ofYt givenX
(t−1) isN (at, Pt), where

at andPt are to be determined. Givenat andPt, our objective is to calculateat+1

andPt+1 whenxt, the next observation, arrives.

Now

at+1 = E(Yt+1|X(t))

= E(Yt + ηt|X(t))

= E(Yt|X(t))
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and

Pt+1 = V ar(Yt+1|X(t))

= V ar(Yt + ηt|X(t))

= V ar(Yt|X(t)) + σ2
η.

Definevt = xt − at andFt = V ar(vt). Then

E(vt|X(t−1)) = E(Yt + ǫt − at|X(t−1))

= at − at = 0.

ThusE(vt) = E(E(vt|X(t−1))) = 0 and

Cov(vt, xj) = E(vtxj) = E[E(vt|X(t−1))xj] = 0,

and asvt andxj are normally distributed, they are independent forj = 1, . . . , t−1.
WhenX

(t) is fixed,X(t−1) andxt are fixed, soX(t−1) andvt are fixed, and vice
versa. Thus

E(Yt|X(t)) = E(Yt|X(t−1), vt)

and

V ar(Yt|X(t)) = V ar(Yt|X(t−1), vt).

Now we apply the conditional mean and variance formula for multivariate
normally distributed random variables:

E(Yt|X(t)) = E(Yt|X(t−1), vt)

= E(Yt|X(t−1)) + Cov(Yt, vt)V ar(vt)
−1vt,

where

Cov(Yt, vt) = E(Yt(xt − at))

= E[Yt(Yt + ǫt − at)]

= E[Yt(Yt − at)]

= E[(Yt − at)
2] + atE[E(Yt − at|X(t−1))]

= E[(Yt − at)
2]

= E[E{(Yt − at)
2|X(t−1)}]

= E[V ar(Yt|X(t−1))]

= Pt,
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and

V ar(vt) = Ft

= V ar(Yt + ǫt − at)

= V ar(Yt|X(t−1)) + σ2
ǫ

= Pt + σ2
ǫ .

Put

Kt =
Pt

Ft

then, sinceat = E(Yt|X(t−1)), we have

E(Yt|X(t)) = at + Ktvt.

Now

V ar(Yt|X(t)) = V ar(Yt|X(t−1), vt)

= V ar(Yt|X(t−1)) − Cov(Yt, vt)
2V ar(vt)

−1

= Pt −
P 2

t

Ft

= Pt(1 − Kt).

Thus the rule set of relations for updating from timet to t + 1 is

vt = xt − at Kalman filter residual; innovation

at+1 = at + Ktvt

Ft = Pt + σ2
ǫ

Pt+1 = Pt(1 − Kt) + σ2
η

Kt =
Pt

Ft

,

for t = 1, . . . , n.

Note: a1 andP1 are assumed to be known; we shall discuss how to initialize
later.
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Now consider the more general model

Yt = GtYt−1 + vt

Xt = HtYt + wt,

with (vt)t independent white noiseWN(0, Vt), and(wt)t ind. WN(0,Wt). Here,
Yt is a vector representing unknown states of the system, andXt are the observed
data. . PutXt = (X1, X2, . . . , Xt), the history ofX up to timet, and

Y s
t = E(Yt|Xs)

P s
t1,t2

= E{(Yt1 − Y s
t1
)(Yt2 − Y s

t2
)T}

= E{(Yt1 − Y s
t1
)(Yt2 − Y s

t2
)T |Xs}.

Whent1 = t2 = t, we will write P s
t for convenience.

SupposeY 0
0 = µ andP 0

0 = Σ0, and that the conditional distribution ofYt−1 given
the historyXt−1 up to timet − 1,

L(Yt−1|Xt−1) = MVN (Y t−1
t−1 , Pt−1).

ThenL(Yt|Xt−1) is again multivariate normal. We have that

E(Xt|Yt) = HtYt

V ar(Xt|Yt) = Wt.

With

Rt = GtPt−1G
−1
t + Vt

the conditional distribution of(Xt, Yt)
T givenX

t−1 is given by

L
(

Xt

Yt

∣∣∣∣∣X
t−1

)
= MVN

((
HtGtY

t−1
t−1

GtY
t−1
t−1

)
,

(
Wt + HtRtH

T
t HtRt

RtH
T
t Rt

))
.

We can compute that the conditional distribution ofYt givenX
t−1 is multivariate

normal with meanY t
t and varianceP (t−1)

t , where

Y t
t = GtY

t−1
t−1 + RtH

T
t (Wt + HtRtH

T
t )−1(Xt − HtGtY

t−1
t−1 )

P
(t−1)
t = Rt − RtH

T
t (Wt + HtRtH

T
t )−1HtRt.
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These equations are known as theKalman filter updating equations. This solves
the filtering problem.

Have a look at the expression forY t
t . It contains the termGtY

t−1
t−1 , which is simply

what we would predict if it were known thatYt−1 = Y t−1
t−1 , plus a term which

depends on the observed error in forecasting, i.e.(Xt − HtGtY
t−1
t−1 ).

Note that we initialized the recursion byX0
0 = µ andP 0

0 = σ0. Instead one might
have initialized the recursion by some prior distribution,of by an uninformative
prior X0

0 = 0, P 0
0 = kI, whereI denotes the identity matrix.

For forecasting, supposet > s. By induction, assume we knowY s
t−1, P

s
t−1. Then

Y s
t = GtY

s
t−1

P s
t = GtP

s
t−1G

T
t + Vt.

Recursion solves the forecasting problem.

TheR commandpredict(arima) uses Kalman filters for prediction; see for
example the airline passenger example, with the code on the course website.

We can calculate that the conditional distribution ofXt+1 givenX
t is

MVN (Ht+1Gt+1Y
t
t+1, Ht+1Rt+1H

T
t+1 + Wt+1).

This fact is the basis of theprediction error decomposition, giving us a likelihood
for parameter estimation.

For smoothing we use theKalman smoother. We proceed by backwards induction.
Suppose thatY t

t , P t
t are known, whereP t

t is the conditional covariance matrix of
Xt given{Y1, . . . , Yt} . With a similar derivation as above, fort = n, n−1, . . . , 1,

Y n
t−1 = Y t−1

t−1 + Jt−1(Y
n
t − Y n−1

t )

P n
t−1 = P t−1

t−1 + Jt−1(P
n
t − P t−1

t )JT
t−1

where

Jt−1 = P t−1
t−1 HT (P t−1

t )−1.

Note that these procedures differ for different initial distributions, and sometimes
it may not clear which initial distribution is appropriate.
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See alsoKalman filters made easyby Terence Tong, at
http://openuav.astroplanes.com/library/docs/writeup.pdf.

Example: Johnson & Johnson quarterly earnings per share, 1960-1980.The
model is

Xt = Tt + St + vt, observed

Tt = φTt−1 + wt1, trend

St = St−1 + St−2 + St−3 + wt2 seasonal component.

Assume that the seasonal components sum to zero over the fourquarters, in ex-
pectation. Herewt are i.i.d. mean-zero normal vectors with covariance matrixQ,
andvt are i.i.d. mean-zero normal with covarianceR.

The state vector is
Yt = (Tt, St, St−1, St−2).

SeeShumway and Stoffer, p.334-336. The initial estimates are as follows.
Growth is about 3 % per year, so chooseφ = 1.03. The initial mean is fixed at
(0.5, 0.3, 0.2, 0.1)t, and the initial covariance matrix is diagonal withΣ0,i,i = 0.01,
for i = 1, 2, 3, 4. Initial state covariance values were taken asq11 = 0.01, q22 =
0.1 to reflect relatively low uncertainty in the trend model compared to the sea-
sonal model. All other elements ofQ are taken to be 0. We takeR = 0.04. Itera-
tive estimation (using the EM algorithm) yielded, after 70 iterations,R = .0086,
φ = 1.035, q11 = 0.0169, q22 = 0.0497, andµ = (.55, .21, .15, .06).

5 Non-linear models

Note that this chapter and the next chapter were not covered in lectures.

Financial time series, e.g. share prices, share price indices, spot interest rates,
currency exchange rates, have led to many specialized models and methods.

There are two main types:

• ARCH models
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• Stochastic Volatility models

ARCH = autoregressive conditionally heteroscedastic

ARCH models are models analagous to ARMA models, but with AR and MA
components which act on the variances of the process as well as, or instead of, the
means.

Stochastic Volatility

In stochastic volatility models there is some unobserved process known as the
volatility which directly influences the variance of the observed series. That is,
these have some similar characteristics to state space models.

A review of ARCH / Stochastic Volatility models is:
Shephard (1996), which is Chapter 1 ofTime Series Models(editors: Cox, Hink-
ley, Barndorff-Nielsen), Chapman and Hall

Usually we consider the daily returnsyt given by

yt = 100 log

(
xt

xt−1

)

wherext is the price on dayt.

Common features of series of this type are:

• there is a symmetric distribution about the mean

• there is little autocorrelation among the values ofyt

• there is strong autocorrelation among the values ofy2
t

• theyt have heavy tailed distributions (i.e. heavier tails than a normal distri-
bution)

• the variance of the process changes substantially over time

Most models of financial time series are of the general structure

yt | zt ∼ N(µt, σ
2
t )
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wherezt is some set of conditioning random variables (maybe lagged values of
yt) andµt andσ2

t are functions ofzt.

An example of an ARCH model is:

yt | zt ∼ N(0, σ2
t )

where

zt = (y1, . . . , yt−1)

σ2
t = α0 + α1y

2
t−1 + · · · + αpy

2
t−p.

Clearly here the variance ofyt depends on lagged values ofyt.

An example of a stochastic volatility model is

yt | ht ∼ N(0, eht)

where

ht+1 = γ0 + γ1ht + ηt

ηt ∼ N(0, σ2
η)

with the variablesηt being independent ast varies.
The state variableht is not observed, but could be estimated using the observa-

tions. This situation is similar to that for state space models, but it is the variance
(not the mean) ofyt that depends onht here.

5.1 ARCH models

The simplest ARCH model, ARCH(1), is

yt = σtǫt, σ2
t = α0 + α1y

2
t−1

with ǫt ∼ N(0, 1), and the sequence ofǫt variables being independent. Here
α1 > 0 has to be satisfied to avoid negative variances. Note that theconditional
distribution ofYt givenYt−1 = yt−1 is

N (0, α0 + α1y
2
t−1).
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Hence
E(Yt) = E[E(Yt|Yt−1)] = 0.

To calculate the variance, we re-write

y2
t = σ2

t ǫ
2
t

α0 + α1y
2
t−1 = σ2

t

so that

y2
t − (α0 + α1y

2
t−1) = σ2

t ǫ
2
t − σ2

t ,

or

y2
t = α0 + α1y

2
t−1 + vt,

with

vt = σ2
t (ǫ

2
t − 1).

Note thatǫ2
t ∼ χ2

1. Now

E(vt) = E[E(vt|Yt−1)]

= E[σ2
t E(ǫ2

t − 1)] = 0,

and furthermore

Cov(vt+h, vt) = E(vtvt+h) = E[E(vtvt+h|Yt+h−1)]

= E[vtE(vtvt+h|Yt+h−1)] = 0.

Thus the error processvt is uncorrelated. If the variance ofvt is finite and constant
in time, and if0 ≤ α1 < 1, theny2

t is a causal AR(1)-process. In particular,

E(Y 2
t ) = V ar(Yt) =

α0

1 − α1

.

In order forV ar(T 2
t ) < ∞ we need3α2

1 < 1.

As the conditional distribution ofYt given the past is normal and easy to write
down, to estimate parameters in an ARCH(1)-model, usually conditional maxi-
mum likelihood is used. For a wide class of processes, asymptotic normality of
the estimators has been proven. A practical difficulty is that the likelihood sur-
face tends to be flat, so that even for the simplest form ARCH(1),the masimum
likelihood estimates ofα0 andα1 can be quite imprecise.
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5.2 GARCH and other models

The ARCH model can be thought of as an autoregressive model iny2
t . An ob-

vious extension of this idea is to consider adding moving average terms as well.
This generalization of ARCH is called GARCH. The simplest GARCH model is
GARCH(1,1):

yt = σtǫt, σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1

The sequence is second-order stationary ifα1 + β1 < 1.

The simplest estimation scheme for the GARCH(1,1) model uses some initial
sample of observations to obtain a crude estimate ofσ2

t , and then use maximum
likelihood estimation based on the prediction error decomposition.

A further extension (EGARCH, where E is for exponential) is to model the
log of σ2

t as a function of the magnitude, and of the sign, ofǫt−1.

The R commandgarch in thetseries package uses the Jarque-Bera test for
normality, based on sample skewness and kurtosis. For a sample x1, . . . , xn the
test statistic is given by

n

6

(
s2 +

(κ − 3)2

4

)

with

s =
1
n

∑
(xi − x̄)3

(
1
n

∑
(xi − x̄)2

) 3

2

the sample skewness, and

κ =
1
n

∑
(xi − x̄)4

(
1
n

∑
(xi − x̄)2

)2

the sample kurtosis. For a normal distribution, the expected skewness is 0, and the
expected kurtosis is 3. To test the null hypothesis that the data come from a normal
distribution, the Jarque-Bera statistic is compared to the chi-square distribution
with 2 degrees of freedom.
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5.3 Stochastic volatility

The basic alternative to ARCH-type models is to allowσ2
t to depend not on past

observations but on some unobserved components.
The log-normal stochastic volatility model is

yt = exp(ht/2), ht+1 = γ0 + γ1ht + ηt

whereǫt ∼ N(0, 1) andηt ∼ N(0, σ2
η) are independent for allt.

The processht is strongly stationary if and only if|γ1| < 1, and if ht is
stationary, then so isyt. Means, and autocorrelations can be computed.

Estimation is not straightforward any more, aslog ǫ2
t does not have a normal

distribution. Often Monte-Carlo approaches are used: see MCMC lectures!

6 Further topics

6.1 Multivariate time series

Virtually all the above discussion generalizes when a vector is observed at each
point in time. In the time domain, analysis would typically use cross-correlations
and vector autoregressive-moving average models. In the frequency domain, de-
pendencies at different frequencies are analysed separately.

6.2 Threshold models

For example when considering neuron firing in the brain, neurons are stimulated
but will only fire once the stimulus exceeds a threshold. Thenthreshold models
are used;

Yt+1 = g(Yt) + ǫt,

whereg(Yt) is piecewise linear.

6.3 More general nonlinear models

Nonlinear time series are of the form

Yt+1 = g(Yt) + ǫt, or Yt+1 = g(Yt, ǫt),
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whereg(y) or g(y, ǫ) is nonlinear.
For nonlinear time series, the amplitude (the periodogram)does not suffice to

estimate the spectral density, and the acf; instead the phase is also needed. That
is, we use vectors of time-delayed observations to describethe evolution of the
system. For example, suppose our time series is

1, 3, 6, 7, 4, 2, 4, 5, 6

and we want to describe it in a 3-dim space, using a delay of 1: then our vectors
are

(1, 3, 6); (3, 6, 7); (6, 7, 4); (7, 4, 2)

and so on, and we can see how these vectors move around in 3-dimspace.
The interplay between randomness and nonlinearity generates new effects

such as coexistence of fixed points, periodic points, and chaotic attractors, and
new tools have been developed for these systems. In particular, nonlinear time
series analysis uses many ideas from deterministic chaos theory.

6.4 Chaos

There is a large literature centering around the idea that some simple deterministic
processes generate output that is very like a realization ofa stochastic process.
In particular it satisfies sensitivity to the initial conditions. This is a completely
different approach to time series.
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