MSc Simulation Practical: Week 6 MT 2002

Congruential Generators

1. Generate 100 pseudo-random numbers using the congruential generator RANDU. Start with an initial value
[image: image1.wmf]0

x

(the seed), and recursively compute values
[image: image2.wmf]n

x

,
[image: image3.wmf]1

³

n

, by letting:

[image: image4.wmf]1

-

=

n

n

ax

x

 mod
[image: image5.wmf]m

where
[image: image6.wmf]31

2

=

m

 and
[image: image7.wmf]3

2

16

+

=

a

. The quantity
[image: image8.wmf]m

x

n

is called a pseudo-random number.

· Test, using the Kolmogorov-Smirnov Test, whether the random numbers are distributed
[image: image9.wmf](

)

1

,

0

U

· Repeat the above 1,000 times and obtain the proportion of the generated samples rejected by the KS Test at a 1% significance level. Construct a histogram of the 1,000 generated p-values. What do you observe?

Possible S-PLUS Code

As a pseudo-random number generator is a function, we can use the S-PLUS command function to implement it. It is possible to specify the arguments either generally, or by assigning values to them, which is what is suggested here.

generator<-function(a = 2^16 + 3, m = 2^31)

{

seed <- runif(1, 0, 1000)

rdm <- rep(0, 100)

rdm[1] <- (a * seed) %% m

for(i in 1:99) {

rdm[i + 1] <- (a * rdm[i]) %% m

}

rdm <- rdm/m

ks.test <- ks.gof(x = rdm,distribution="uniform",min=0,max=1)

return(rdm=rdm,ks.test = ks.test)

}

To start the RNG we use a random seed; runif generates a random uniform number. Here (1,0,1000) stands for: one uniform random number, uniformly chosen from 0 to 1000. You could also set the seed equal to a fixed number, but that would make the second part of the question much harder. As the goal is to generate 100 random numbers, we define a vector of size 100, called rdm. We then use a loop to implement the iteration for the RNG. In S-PLUS, %% denotes the modulo operation. The command ks.gof carries out the Kolmogorov-Smirnov test; we need to specify the input (which is our vector rdm), and the target distribution to compare with. It returns the p-value for the test, and the KS-statistic.

For the second part of the question, it is useful to define the production of that histogram as a function of the RNG, the number of iterations (B1), and the level (0.01) of the test. Again we use a loop to create the B1 p-values. With the $ operator combined with the [[2]] operator we extract the p-value from the output of the function generator. The function hist creates a histogram. It requires the data (ks.test), and we also recommend the number of bars to be 40. The command cat can be used to print to standard output; it makes the output easier to understand.

simpract.1<-function(B1 = 1000,a =2^16 + 3,m = 2^31,level=0.01)

{

ks.test <- vector("numeric")

for(i in 1:B1) {

seed <- runif(1, 0, 1000)

ks.test[i] <- generator()[[2]]$p.value

}

hist(ks.test, nclass = 40, main = "Histogram of p-values")

cat("Proportion of", format(B1), "samples rejected

 by KS test at\n significance level of",

 format(level), "\n")

 return((length(ks.test[ks.test <= level]))/B1)}
2.

a. Generate numbers from a mixed congruential generator with
[image: image10.wmf]2048

=

m

,
[image: image11.wmf]43

=

a

,
[image: image12.wmf]0

=

b

 and
[image: image13.wmf]1

0

=

X

. You could use the following S-PLUS function.

cg<-function(m = 2048, a = 43, b = 0, n = 100, x0 = 1)

{

x <- c(x0, rep(0, (n - 1)))

for(i in 2:n) {

x[i] <- (a * x[i - 1] + b) %% m

}

x <- x/m

x

}

b. Plot the successive pairs of data (i.e. plot
[image: image14.wmf](

)

(

)

(

)

{

}

400

399

3

2

2

1

,

,

,

,

,

,

x

x

x

x

x

x

K

, using the generator described in Question 2. What do you notice? Repeat the plots for different numbers of pairs and comment. You could use the following S-PLUS commands.

xcg<-cg(n=400)

lag.plot(xcg,lags=1)
c. Now generate from the congruential generator with
[image: image15.wmf]2048

=

m

,
[image: image16.wmf]65

=

a

,
[image: image17.wmf]1

=

b

 and
[image: image18.wmf].

0

0

=

X

 Repeat the plots and comment.

d. Repeat the plots for the S-PLUS generator runif(). What do you notice?

3. Simulating from the Beta distribution

The Beta(2,2) distribution has as density

 f(x) = 6x(1-x), 0 <x <1.

The corresponding distribution function is tricky to invert, thus the inversion method is difficult to implement. Instead, use the acceptance-rejection method with envelope function

 g(x) = 1, 0 <x <1.

It is instructive to keep track of the number of rejected proposals.

To implement this method, you could use the following S-PLUS code, which again uses the function environment and loops.

"f"<- function(y)

 {6*y*(1-y)}

"g" <-function(y)

 {1}

and

betatwotwo <- function(n)

{rand <- rep(0,n)

 c <- 3/2

 i <- 1

 count <- 0

 while (i <=n)

 {u <- runif(1)

 y <- runif(1)

 if (u<=f(y)/(c*g(y)))

 {rand[i] <- y

 i <- i+1}

 else count <- count+1

 }

cat("number rejected = ", count, "\n")

rand

}

How many rejections would you expect until you generate a Beta variable using this method?
_1066716124.unknown

_1066717971.unknown

_1066718663.unknown

_1066749472.unknown

_1099229609.unknown

_1066718693.unknown

_1066718705.unknown

_1066717972.unknown

_1066717882.unknown

_1066717970.unknown

_1066716238.unknown

_1066716039.unknown

_1066716084.unknown

_1066716101.unknown

_1066716063.unknown

_1066715992.unknown

_1066716006.unknown

_1066715955.unknown

