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Markov chain Monte Carlo is a stochastic simulation

technique that is very useful for computing inferential

quantities. It is often used in a Bayesian context, but

not restricted to a Bayesian setting.
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Lectures will take place Mondays 12-1 and Wednesdays

11-12, Weeks 5-7, in the Department of Statistics. There

will be a practical session, using the software package

WinBUGS, Friday week 5, 1:30 -3 pm, 3 - 4:30 pm, and

4:30 - 6 pm.

Acknowledgement: Chris Holmes for providing his

lecture notes and examples, which are partly due to Nicky

Best.
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1. Review of Bayesian inference

Data y = y1, y2, . . . , yn, realisations of random vari-

ables Y1, Y2, . . . , Yn, with distribution (model)

f (y1, y2, . . . , yn|θ)

L(θ|y) = f (y|θ) is the likelihood of y if θ is the true

parameter (vector)

Parameter (vector) θ = (θ1, . . . , θp) has a prior distribu-

tion π(θ)
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Inference is based on the posterior distribution

π(θ|y) =
f (y|θ)π(θ)∫
f (y|θ)π(θ)dθ

=
L(θ|y)π(θ)∫
L(θ|y)π(θ)dθ

∝ L(θ|y)π(θ)

i.e.

Posterior ∝ Likelihood× Prior
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Three quantities of interest are

1. Prior predictive distribution

p(y) =
∫
f (y|θ)π(θ)dθ

represents the probability of observing the data that

was observed before it was observed
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2. Marginal effects of a subset of parameters in a mul-

tivariate model: Suppose that we are interested in

π(θi|y), for some subset θi ∈ θ (here and in the fol-

lowing we abuse notation by using θ = {θ1, . . . , θp}

to denote a set as well as a vector). Then

π(θi|y) =
∫
π(θi, θ−i|y)dθ−i

=
∫
π(θi|θ−i,y)π(θ−i|y)dθ−i,

where θ−i = θ \ θi denotes the vector θ with θi re-

moved. This distribution is also called the marginal

likelihood.
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3. Posterior predictive distribution: Let ỹ denote some

future unobserved response, then the posterior predic-

tive distribution is

p(ỹ|y) =
∫
f (ỹ|θ,y)π(θ|y)dθ

=
∫
f (ỹ|θ)π(θ|y)dθ.

For the last step we used that ỹ,y are conditionally

independent given θ, though clearly unconditionally

they are dependent.
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Example (See Statistical Theory, MT 2006)

X1, . . . , Xn random sample N (θ, σ2), where σ2 known

prior π(θ) ∼ N (µ, τ 2), where µ, τ 2 known

f (x1, . . . , xn|θ) = (2πσ2)−
n
2exp

−
1

2

n∑
i=1

(xi − θ)2

σ2



so

π(θ|x) ∝ exp

−
1

2

 n∑
i=1

(xi − θ)2

σ2
+

(θ − µ)2

τ 2




Let

a =
n

σ2
+

1

τ 2

b =
1

σ2

∑
xi +

µ

τ 2

Calculate:

π(θ|x) ∼ N
b

a
,
1

a



and the predictive distribution for x is N (µ, σ2 + τ 2).
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Bayesian analysis might then continue by calculating

the posterior mean, the posterior variance, credible inter-

vals, or using Bayesian hypothesis testing.
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Note that in the above example, the posterior again

follows a normal distribution:

Prior (normal) → Posterior (normal)

conjugate prior: when prior and posterior are in the

same family

Computationally even evaluating the posterior distri-

bution, the prior predictive distribution, the marginal

likelihoods, and the posterior predictive distribution is

not an easy task, in particular if we do not have conju-

gate priors.

Historically, the need to evaluate integrals was a major

stumbling block for the take up of Bayesian methods.
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Around 15 years ago or so, a numerical method known

as Markov chain Monte Carlo (MCMC) was popu-

larized by a paper of Gelfand and Smith (1990); other

statisticians such as Ripley, Besag, Tanner, Geman were

using MCMC before.
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2. Monte Carlo integration

In general, when X is a random variable with distribu-

tion π, and h is a function, then evaluating

Eπ[h(X)] =
∫
h(x)π(x)dx

can be difficult, in particular when X is high-dimensional.

However, if we can draw samples

x(1), x(2), . . . , x(n) ∼ π

then we can estimate

Eπ[h(X)] ≈ 1

n

n∑
i=1

h(x(i)).

This is Monte Carlo integration
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For independent samples, by the law of large numbers

we have that, in probability

1

n

n∑
i=1

h(x(i))→ Eπ[h(X)] as n→∞ (1)

and the Central Limit Theorem holds under weak as-

sumptions on the distribution of h(X)
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Application to Bayesian inference

Recall: all the information (needed for, say, predictions,

marginals, etc) is contained in the posterior π(θ|y)

However, π(θ|y) may not be quantifiable as a standard

distribution.

Suppose we are able to draw samples, θ(1), . . . , θ(M),

from π(θ|y), so that,

θ(i) ∼ π(θ|y)

Then most inferential quantities of interest are solvable

using the bag of samples, {θ(i)}Mi=1, as a proxy for π(θ|y).
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Examples:

(1) Suppose we are interested in Pr(θ < a|y). Then,

Pr(θ < a|y) ≈ 1

M

M∑
i=1

I(θ(i) < a)

where I(·) is the logical indicator function.

More generaly, for a set A ∈ Θ

Pr(θ ∈ A|y) ≈ 1

M

M∑
i=1

I(θ(i) ∈ A)

(2) Prediction: Suppose we are interested in p(ỹ|y), for

some future ỹ. Then,

p(ỹ|y) ≈ 1

M

M∑
i=1

f (ỹ|θ(i),y)

≈ 1

M

M∑
i=1

f (ỹ|θ(i))
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(3) Inference of marginal effects: Suppose, θ is multivari-

ate and we are interested in the subvector θj ∈ θ (for

example a particular parameter in a normal linear re-

gression model). Then,

Fθj
(a) ≈ 1

M

M∑
i=1

I(θ
(i)
j ≤ a)

where F (·) denotes the distribution function; More

generally for any set Aj ∈ Θj, the lower dimensional

parameter space,

Pr(θj ∈ Aj|y) ≈ 1

M

M∑
i=1

I(θ
(i)
j ∈ Aj)

This last point is particularly useful.
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Note that all these quantities can be computed from

the same bag of samples. That is, we can first collect

θ(1), . . . , θ(M) as a proxy for π(θ|y) and then use the same

set of samples over and again for whatever we are subse-

quently interested in.

Warning: Monte Carlo integration is a last resort; if

we can calculate expectations and probabilities analyti-

cally, then that would be much preferred.
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Independent sampling from π(x) may be difficult. For-

tunately (1) still applies if we generate samples using a

Markov chain, provided some conditions apply - in that

case (1) is called the Ergodic Theorem. To state the

Ergodic Theorem properly, we recall some Markov chain

concepts.
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3. Markov chains

Suppose that X1, X2, . . . is a sequence of (discrete) ran-

dom vectors such that, for all t,x,

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . .)

= P (Xt+1 = xt+1|Xt = xt)

then (Xt)t=0,1,... is called a Markov chain. Note that

Xt+1 depends on the past X0, X1, . . . , Xt only through

Xt.
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A homogeneous Markov chain (Xt)t=0,1,... is generated

by sampling from a transition kernel P (y, x); if Xt = xt,

then Xt+1 ∼ P (xt, x), for t = 0, 1, 2, . . .; more generally,

for any set A,

P (xt, A) := P (Xt+1 ∈ A|Xt = xt).

If the transition probabilities depended on t, the chain

would be called inhomogeneous.
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Example. Consider the AR(1) process

Xt = αXt−1 + εt,

where the εt’s are independent, identically distributed.

Then (Xt)t=0,1,... is a homogeneous Markov chain.

For a Markov chain with finite state space I we can cal-

culate n-step transition probabilities by matrix iteration:

If p
(n)
ij = Pr(Xn = j|X0 = i), for i, j ∈ I , then

(p
(n)
ij )i,j∈I = P n.
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Example. A two-state Markov chain (Xt)t=0,1,... has

transition matrix

P =


1− α α

β 1− β


.

From the equation P n+1 = P nP we have, for example,

p
(n+1)
11 = (1− α)p

(n)
11 + βp

(n)
12 ;

this corresponds to conditioning on the nth step:
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p
(n+1)
11 = Pr(Xn+1 = 1|X0 = 1)

= Pr(Xn+1 = 1|X0 = 1, Xn = 1)Pr(Xn = 1|X0 = 1)

+Pr(Xn+1 = 1|X0 = 1, Xn = 2)Pr(Xn = 2|X0 = 1)

= Pr(Xn+1 = 1|Xn = 1)p
(n)
11

+Pr(Xn+1 = 1|Xn = 2)p
(n)
12

= (1− α)p
(n)
11 + βp

(n)
12 .

From

p
(n)
12 + p

(n)
11 = Pr(Xn = 1 or 2) = 1

we obtain for n ≥ 1,

p
(n+1)
11 = (1− α− β)p

(n)
11 + β,
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and p
(0)
11 = 1. Solving the system gives as unique solution

p
(n)
11 =



β
α+β + α

α+β(1− α− β)n for α + β > 0

1 for α + β = 0

.
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A Markov chain has stationary or invariant distribu-

tion π if

∫
π(y)P (y, x)dy = π(x), all x

that is, once we start in the stationary distribution π, all

Xt will have the distribution π

In matrix notation: πP = π

Interpretation: In the long run the proportion of time

the chain spends in any given state x is proportional to

π(x).

Fact: If the state space I is finite and p
(n)
ij → πj as

n→∞ for all j ∈ I , then π = (πi, i ∈ I) is invariant.
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Example: For the two-state Markov chain above, as

n→∞,

P n →



β
α+β

α
α+β

β
α+β

α
α+β



and so π = ( β
α+β , α

α+β) is invariant distribution.

You can also check that πP = π.
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One can try to break a Markov chain Xn into smaller

pieces. We say that i→ j, i communicates with j, if

P (Xn = j for some n ≥ 0|X0 = i) > 0.

A Markov chain is irreducible if any set of states can

be reached from any other state in a finite number of

moves, i.e. if P (Xn = j for some n ≥ 0|X0 = i) > 0 for

all i, j ∈ I . Every state communicates with every other

state.

Fact: If the chain is irreducible and if it has a stationary

distribution, then the stationary distribution is unique.
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A criterion for the existence of a stationary distribution

is reversibility. The Markov chain (Xt)t=0,1,... as called

reversible if there is a function π such that the detailed

balance equations hold:

π(xt)pxt,xt+1 = π(xt+1)pxt+1,xt; (2)

the pairs (xt, xt+1) and (xt+1, xt) will occur on average

with equal frequency in realisations of the Markov chain.

Fact: If the Markov chain is irreducible and if the π in

(2) are such that 0 ≤ π(x) ≤ 1 and ∑
x π(x) = 1, then π

is the unique equilibrium distribution of the chain.

This approach can be generalised to continuous state

spaces.
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A state i is aperiodic if p
(n)
ii > 0 for all sufficiently large

n.

Example. Consider the two-state Markov chain with

transition matrix

P =


0 1

1 0


.

Then P 2 = I, P 2n = I, P 2n+1 = P , so each state returns

to itself at every second step: the chain is periodic.

Fact: If an irreducible Markov chain has an aperiodic

state, then automatically all its states are aperiodic.
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Ergodic Theorem: Assume the homogeneous Markov

chain has stationary distribution π and is aperiodic and

irreducible. Then (1) holds; for any function h such that

∫
h(x)π(x)dx exists,

1

n

n∑
t=1

h(Xt)→ Eπ[h(X)] =
∫
h(x)π(x)dx as n→∞.

Here, X ∼ π.

Also for such chains with

σ2
h = varπ[h(X)] <∞

the central limit theorem holds, and convergence to the

stationary distribution occurs (geometrically) fast.
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So we can apply Monte Carlo integration to approx-

imate
∫
h(x)π(x)dx by simulating a Markov chain that

has π as stationary distribution.

Further reading on Markov chains: J.R. Norris, Markov

chains. Cambridge University Press, 1997.
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Note: Usually it is not possible to start the chain in

the stationary distribution - if it was easy to sample from

that distribution directly, we would not need a Markov

chain in the first place.

If we start the chain in some arbitrary value X0, then

for small n the distribution of the samples may be quite

far away from the stationary distribution, and we better

discard the initial set of, say, T samples as being unrep-

resentative.

Knowing when to start collecting samples is a nontrivial

task; we shall deal with this later (watch out for burn-in).
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4. MCMC in Bayesian inference: idea

As the name suggests, MCMC works by simulating a

discrete-time Markov chain; it produces a dependent se-

quence (a chain) of random variables, {θ(i)}Mi=1, with ap-

proximate distribution,

p(θ(i)) ≈ π(θ|y)

The chain is initialised with a user defined starting

value, θ(0)

The Markov property then specifies that the distribu-

tion of θ(i+1)|θ(i), θ(i−1), . . . , depends only on the current

state of the chain θ(i)
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It is fair to say that MCMC has revitalised (perhaps

even revolutionised) Bayesian statistics. Why?

MCMC methods construct a Markov chain on the state

space, θ ∈ Θ, whose steady state distribution is the pos-

terior of interest π(θ|y)

MCMC procedures return a collection of M samples,

{θ(1), . . . , θ(M)} where each sample can be assumed to be

drawn from π(θ|y), (with slight abuse of notation)

Pr(θ(i) ∈ A) = π(θ ∈ A|y)

for any set A ∈ Θ, or,

θ(i) ∼ π(θ|y) for i = 1, . . . ,M
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We shall see that

• MCMC is a general method that simultaneously solves

inference of {π(θ|y), π(θi|y), p(ỹ|y)}

• MCMC only requires evaluation of the joint distribu-

tion

π(y, θ) ∝ p(y|θ)π(θ)

up to proportionality, pointwise for any θ ∈ Θ

• MCMC allows modeller to concentrate on modelling.

That is, to use models, π(y, θ), that you believe repre-

sent the true dependence structures in the data, rather

than those that are simple to compute
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Example: Logistic Regression - Titanic data

The data relates to 1, 316 passengers who sailed on the

Titanic’s maiden and final voyage

We have data records on whether each passenger survived

or not, yi ∈ {survived, died}, as well as three attributes

of the passenger

(1) Ticket class: {first, second, third}

(2) Age: {child, adult}

(3) Sex: {female, male}

We wish to perform a Bayesian analysis to see if there is

association between these attributes and survival proba-

bility. The Bayesian analysis begins with the specification

of a sampling distribution and prior.
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Sampling density for Titanic survivals

Let, yi ∈ {0, 1}, denote an indicator of whether the ith

passenger survived or not

We wish to relate the probability of survival,

P (yi = 1),

to the passengers covariate information, xi = {class, age,

sex } for the ith passenger

That is, we wish to build a probability model for

p(yi|xi)
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A popular approach is to use a Generalised Linear

Model (GLM) which defines this association to be linear

on an appropriate scale, for instance,

P (yi = 1|xi) = g(ηi)

ηi = xiβ

where xiβ = ∑
j xijβj and g(·) is a monotone link func-

tion, that maps the range of the linear predictor, ηi ∈

[−∞,∞], onto the appropriate range, P (yi|xi) ∈ [0, 1]

There is a separate regression coefficient, βj, associ-

ated with each predictor, in our case, β = (βclass, βage, βsex)
′
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The most popular link function for binary regression

(two-class classification) yi ∈ {0, 1} is the logit link, as it

quantifies the Log-odds

logit(ηi) =
1

1 + exp(−ηi)
= log

P (yi = 1|xi)

P (yi = 0|xi)



where we note, logit(ηi)→ 0 as ηi → −∞, logit(ηi)→ 1

as ηi →∞

In this case, the value of the regression coefficients β

quantifies the change in the log-odds for unit change in

associated x

This is attractive as clearly β is unknown, and hence

we shall adopt a prior, π(β)
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It is usual to write the model in hierarchical form,

p(yi|xi) = g(ηi)

ηi = xiβ

β ∼ π(β)

We are interested in quantifying the statistical associa-

tion between the survival probability and the attributes,

via the posterior density,

π(β|y,x) ∝ p(y|x, β)π(β)

∝
 N∏
i=1

p(yi|xi, β)
 π(β)

which is not of standard form

To infer this we shall use the WinBUGS package.
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Example: Normal Linear Regression

Consider a normal linear regression,

y = xβ + ε

where ε ∼ N(0, σ2I). Alternatively, y ∼ N (xβ, σ2I); to

make the y-dependence clearer, we write

y ∼ N(y|xβ, σ2I)

For now assume that σ is known

Classically, we would wish to estimate the regression

coefficients, β, given a data set, {yi, xi}ni=1, say using

MLE

β̂ = (x′x)−1x′y
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Bayesian modelling proceeds by constructing a joint

model for the data and unknown parameters,

π(y, β|x, σ2) = f (y|x, β, σ2)π(β|x, σ2)

= N(y|xβ, σ2I)π(β)

where we assume, for now, that the prior π(β) is inde-

pendent of {x, σ2}
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Suppose we take

π(β) = N(β|0, vI),

where v is a scalar. Then

π(β|y) ∝ f (y|β)π(β)

∝ σ−n/2 exp

−
1

2σ2
(y − xβ)′(y − xβ)]×

|v|−1/2 exp[−(2v)−1β′β
}

∝ exp
− 1

2σ2
β′x′xβ − (2v)−1β′β

+
1

2σ2
(y′xβ + β′x′y)

 .
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We recall that the multivariate normal density fN(µ,Σ)

for some vector z can be written as

fN(µ,Σ)(z) ∝ exp

−
1

2
(z− µ)′Σ−1(z− µ)


∝ exp

−
1

2
z′Σ−1z

+
1

2
(z′Σ−1µ + µ′Σ−1z)

 .

Matching up the densities we find

Σ−1 = (v−1 + σ−2x′x)I

so that

Σ = σ2(σ2v−1 + x′x)−1I

and

µ =
1

σ2
Σx′y = (x′x + σ2v−1)−1x′y.
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Therefore we can write

π(β|y) = N(β|β̂, v̂I)

β̂ = (x′x + σ2v−1)−1x′y

v̂ = σ2(x′x + σ2v−1)−1
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For new data, {y0, x0}, predictive densities follow,

p(y0|x0,y) =
∫
f (y0|x0, β,y)π(β|y)dβ

=
∫
N(y0|x0β, σ2)N(β|β̂, v̂I)dβ

= N(y0|x0β̂, σ2(1 + x0v̂x′0)).
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MCMC would approximate the posterior distribution

with M samples drawn from the posterior,

{β(1), . . . , β(M)} ∼ N(β̂, v̂I)

(and similarly for the predictive densities).
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5. MCMC in Bayesian inference: algorithms

In the previous chapter we presented an example of us-

ing MCMC for simulation based inference.

Up to now we have not discussed the algorithms that

lie behind MCMC and generate the samples

First, recall that MCMC is an iterative procedure, such

that given the current state of the chain, θ(i), the algo-

rithm makes a probabilistic update to θ(i+1)
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The general algorithm is

MCMC Algorithm

θ(0) ← x

For i=1 to M

θ(i) = f (θ(i−1))

End

where f (·) outputs a draw from a conditional probabil-

ity density

The update, f (·), is made in such a way that the dis-

tribution p(θ(i)) → π(θ|y), the target distribution, as

i→∞, for any starting value θ(0)
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We shall consider two of the most general procedures

for MCMC simulation from a target distribution, namely,

the Metropolis-Hastings algorithm and, the Gibbs

sampler
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4.1 The Metropolis-Hastings (M-H) algorithm

Metropolis et al. (1953) give an algorithm of how to

construct a Markov chain whose stationary distribution

is our target distribution π; this method was generalized

by Hastings (1970).

Let the current state of the chain be θ(i)

Consider a (any) conditional density q(θ̃|θ(i)), defined on

θ̃ ∈ Θ (with the same dominating measure as the model)

We call q(·|θ(i)) the proposal density for reasons that

will become clear

We shall use q(·|θ(i)) to update the chain as follows
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M-H Algorithm

θ(0) ← x

For i=0 to M

Draw θ̃ ∼ q(θ̃|θ(i))

Set θ(i+1) ← θ̃ with probability α(θ(i), θ̃), where

α(a, b) = min

1,
π(b|y)q(a|b)
π(a|y)q(b|a)



Else set θ(i+1) ← θ(i)

End

It can be shown that the Markov chain (θ(i)), i = 1, 2, . . .

will indeed have π(θ|y) as stationary distribution:
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Why does it work?

The key idea is reversibility or detailed balance:

In general the target distribution π is invariant for P if

for all x, y in the state space, the detailed balance equa-

tion holds:

π(x)P (x, y) = π(y)P (y, x).
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We check that the M-H sampler satisfies detailed bal-

ance:

Let P be the transition matrix for the M-H chain. Then,

for a 6= b,

π(a|y)P (a, b) = π(a|y)q(b|a)α(a, b)

= min(π(a|y)q(b|a), π(b|y)q(a, b))

and this expression is symmetric in a, b, hence

π(a|y)P (a, b) = π(b|y)P (b, a),

and detailed balance is satisfied.
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Note:

• There is a positive probability of remaining in the

same state, 1− α(θ(i), θ̃); and this counts as an extra

iteration.

• The process looks like a stochastic hill climbing algo-

rithm. You always accept the proposal if p(b|y)q(a|b)
p(a|y)q(b|a) >

1 else you accept with that probability (defined by the

ratio)

• The acceptance term corrects for the fact that the

proposal density is not the target distribution
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To accept with probability π(b|y)q(a|b)
π(a|y)q(b|a),

First, draw a uniform random variable, say U , uniform

on [0, 1].

IF U < α(θ(i), θ̃);

THEN accept θ̃;

ELSE reject and chain stays at θ(i)

The ratio of densities means that the normalising con-

stant p(y) =
∫
f (y|θ)π(θ)dθ cancels, top and bottom.

Hence, we can use MCMC when the normalizing con-

stant is unknown (as is often the case)
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In the special case of a symmetric proposal density

(Metropolis method), q(a|b) = q(b|a), for example

q(a|b) = N(a|b, 1), then the ratio reduces to that of the

probabilities

α(a, b) = min

1,
π(b|y)

π(a|y)



The proposal density, q(a|b), is user defined. It is more

of an art than a science.
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Pretty much any q(a|b) will do, so long as it gets you

around the state space Θ. However different q(a|b) lead

to different levels of performance in terms of convergence

rates to the target distribution and exploration of the

model space
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Example

Suppose that we want to generate a random element

from the set S of all permutations (x1, . . . , xn) of the

numbers (1, . . . , n) for which ∑n
j=1 jxj > a for a given

constant a.

We say that two permutations are neighbours of each

other if one results from an interchange of two of the

position of the other (a transposition). So, (1, 2, 3, 4)

and (1, 2, 4, 3) are neighbours, whereas (1, 2, 3, 4) and

(1, 3, 4, 2) are not.
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Let N(s) denote the set of neighbours in S of a per-

mutation s, then we choose

q(t|s) =
1

|N(s)|
, t ∈ N(s)

that is, the target next state from s is equally likely

to be any of its neighbours. Since the desired limiting

probabilities of the chain are π(s) = c, a constant, for

s = (x1, . . . , xn) such that ∑n
j=1 jxj > a, and zero other-

wise, it follows that

α(s, t) = min

1,
|N(s)|
|N(t)|



if s and t are neighbours and in S, and α(s, t) = 0 oth-

erwise.
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Choices for q(a|b)

Clearly q(a|b) = π(θ|y) leads to an acceptance proba-

bility of 1 for all moves and the samples are iid from the

posterior. But the reason we are using MCMC is that we

do not know how to draw from π(θ|y)

There is a trade off: we would like “large” jumps (up-

dates), so that the chain explores the state space, but

large jumps usually have low acceptance probability as

the posterior density can be highly peaked

As a rule of thumb, we set the spread of q() to be as large

as possible without leading to very small acceptance rates,

say < 0.1

Finally, q(a|b) should be easy to simulate and evaluate
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It is usual to “centre” the proposal density around the

current state and make “local” moves. A popular choice

when θ is real valued is to take q(a|b) = b + N(a|0, V )

where V is user specified. That is, a normal density cen-

tred at the current state b.

Warning. The Metropolis-Hastings algorithm is a

general approach to sampling from a target density, in

our case π(θ|y). However, it requires a user specified pro-

posal density q(a|b) and the acceptance rates must be

continuously monitored for low and high values. This

is not good for automated models (software)
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4.2 The Gibbs Sampler

An important alternative approach is available in the

following circumstances:

Suppose that the multidimensional θ can be partitioned

into p subvectors, θ = {θ1, . . . , θp}, such that the condi-

tional distribution,

π(θj|θ−j, y)

is easy to sample from; where θ−j = θ\θj

Iterating over the p subvectors and updating each sub-

vector in turn using π(θj|θ−j, y) leads to a valid MCMC

scheme known as the Gibbs Sampler, provided that

the chain remains irreducible and aperiodic.
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Gibbs Sampler

θ(0) ← x

For i=0 to M

Set θ̃ ← θ(i)

For j=1 to p

Draw X ∼ π(θj|θ̃−j, y)

Set θ̃j ← X

End

Set θ(i+1) ← θ̃

End
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Note:

The Gibbs Sampler is a special case of the Metropolis-

Hastings algorithm using the ordered sub-updates, q(·) =

π(θj|θ−j, y)

All proposed updates are accepted (there is no accept-

reject step)

θj may be multidimensional or univariate

Often, π(θj|θ−j, y) will have standard form even if π(θ|y)

does not
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Example: normal linear regression

Consider again the normal linear regression model dis-

cussed in Chapter 1

y = xβ + ε

where ε ∼ N(0, σ2I). Alternately,

y ∼ N(y|xβ, σ2I)

we now assume that σ is unknown

As before we construct a joint model for the data and

unknown parameters,

p(y, β, σ2|x) = f (y|x, β, σ2)π(β, σ2|x)

= N(y|xβ, σ2I)π(β)π(σ2)

assuming independence for the priors for β, σ2
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Suppose we take,

π(β) = N(β|0, vI)

π(σ2) = IG(σ2|a, b)

where IG(·|a, b) denotes the Inverse-Gamma density,

IG(x|a, b) ∝ x−(a−2)/2 exp(−b/(2x))

Then the joint posterior density is,

p(β, σ2|y) ∝ f (y|β)π(β)π(σ2)

∝ σ−n/2 exp[− 1

2σ2
(y − xβ)′(y − xβ)]×

|v|−1/2 exp[−(2v)−1β′β]×

(σ2)−(a−2)/2 exp(−b/(2σ2))

This is not a standard distribution!
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However, the full conditionals are known, and

π(β|y, σ2) = N(β|β̂, v̂I)

β̂ = (x′x + σ2v−1)−1x′y

v̂ = σ2(x′x + σ2v−1)−1

and

π(σ2|β,y) = IG(σ2|a + n, b + SS)

SS = (y − xβ)′(y − xβ)

Hence the Gibbs sampler can be adopted:
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Gibbs Sampler, normal linear regression

(β, σ2)(0) ← x

For i=0 to M

Set (β̃, σ̃2)← (β, σ2)(i)

Draw β̃|σ2 ∼ N(β|β̂, v̂I)

Draw σ̃2|β̃ ∼ IG(σ2|a + n, b + SS)

Set (β, σ2)(i+1) ← (β̃, σ̃2)

End
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Example: hierarchical normal linear regres-

sion

Consider again the normal linear regression model

y = xβ + ε

where ε ∼ N(0, σ2I).

we now assume that both σ and prior variance v

of π(β) are unknown

In hierarchical form we write,

y ∼ N(y|xβ, σ2I)

β ∼ N(β|0, vI)

σ2 ∼ IG(σ2|a, b)
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v ∼ IG(v|c, d)

where IG(·|a, b) denotes the Inverse-Gamma density,

IG(x|a, b) ∝ x−(a−2)/2 exp(−b/(2x))

note the “hierarchy” of dependencies
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Then the joint posterior density is

π(β, σ2|y) ∝ f (y|β)π(β)π(σ2)

∝ σ−n/2 exp
− 1

2σ2
(y − xβ)′(y − xβ)

×

|v|−1/2 exp[−(2v)−1β′β]×

(σ2)−(a−2)/2 exp(−b/(2σ2))×

v−(c−2)/2 exp(−d/(2v))

Again, this is not a standard distribution!
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However, the full conditionals are known, and

π(β|y, σ2, v) = N(β|β̂, v̂I)

β̂ = (σ−2x′x + v−1)−1σ−2x′y

v̂ = (σ−2x′x + v−1)−1

and

π(σ2|β,y) = IG(σ2|a + n, b + SS)

SS = (y − xβ)′(y − xβ)

and

π(v|β) = IG(v|a + p, b + SB)

SB = β′β

where p is the number of predictors (length of β vector)

Hence the Gibbs sampler can be adopted:
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Gibbs Sampler, hierarchical normal linear re-

gression

{β, σ2, v}(0) ← x

For i=0 to M

Set (β̃, σ̃2, ṽ)← {β, σ2, v}(i)

Draw β̃|σ2, v ∼ N(β|β̂, V̂ )

Draw σ̃2|β̃ ∼ IG(σ2|a + n, b + SS)

Draw ṽ|β̃ ∼ IG(v|c + p, d + SB)

Set {β, σ2, v}(i) ← (β̃, σ̃2, ṽ)

End
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When the conditionals do not have standard form we

can usually perform univariate updates (as there are a

variety of methods for univariate sampling from a target

density).
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Some Issues:

The Gibbs sampler is automatic (no user set parame-

ters) which is good for software, such as WinBugs

But, M-H is more general and if dependence in the full

conditionals, π(θj|θ−j, y) is strong the Gibbs sampler can

be very slow to move around the space, and a joint M-H

proposal may be more efficient. The choice of the subvec-

tors can affect this

We can combine the two in a Hybrid sampler, up-

dating some components using Gibbs and others using

M-H

78



6. Output analysis and diagnostics

In an ideal world, our simulation algorithm would re-

turn i.i.d. samples from the target (posterior) distribu-

tion

However, MCMC simulation has two short-comings

1. The distribution of the samples, p(θ(i)) only converges

with i to the target distribution

2. The samples are dependent

In this chapter we shall consider how we deal with these

issues.

We first consider the problem of convergence.
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6.1 Convergence and burn-in

Recall that MCMC is an iterative procedure, such that:

Given the current state of the chain, θ(i), the algorithm

makes a probabilistic update to θ(i+1)

The update, f (·), is made in such a way that the dis-

tribution p(θ(i)) → π(θ|y), the target distribution, as

i→∞, for any starting value θ(0)

Hence, the early samples are strongly influenced by the

distribution of θ(0), which presumably is not drawn from

π(θ|y)
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The accepted practice is to discard an initial set of sam-

ples as being unrepresentative of the stationary distribu-

tion of the Markov chain (the target distribution). That

is, the first B samples, {θ(0), θ(1), . . . , θ(B)}, are discarded

This user defined initial portion of the chain to discard

is known as a burn-in phase for the chain

The value of B, the length of burn-in, is determined

by You using various convergence diagnostics which

provide evidence that p(θ(B+1)) and π(θ|y) are in some

sense “close”
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It is worth emphasising from the beginning that in prac-

tice no general exact tests for convergence exist.

Tests for convergence should more formally be called

tests for lack of convergence. That is, as in hypothesis

testing, we can usually only detect when it looks like con-

vergence has NOT yet been met.

Remember, all possible sample paths are indeed possi-

ble.
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Available convergence diagnostics

WinBugs bundles a collection of convergence diagnos-

tics and sample output analysis programs in a menu driven

set of S-Plus functions, called CODA: a set of routines for

• graphical analysis of samples;

• summary statistics, and;

• formal tests for convergence

We shall consider the graphical analysis and conver-

gence tests; for more details see the CODA documentation

at www-fis.iarc.fr/coda/ and at

mrc-bsu.cam.ac.uk/bugs/documentation/

coda03/cdaman03.html.
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Graphical Analysis

The first step in any output analysis is to eyeball sam-

ple traces from various variables, {θ(1)
j , . . . , θ

(M)
j }, for a

set of key variables j: trace plot or history plot

There should be

- no continuous drift

- no strong autocorrelation

in the sequence of values following burn-in (as the sam-

ples are supposed to follow the same distribution)
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Usually, θ(0) is far away from the major support of the

posterior density. Initially then, the chain will often be

seen to “migrate” away from θ(0) towards a region of high

posterior probability centred around a mode of π(θ|y)

If the model has converged, the trace plot will move

like a snake around the mode of the distribution.

The time taken to settle down to a region of a mode is

certainly the very minimum lower limit for B

The trace is not easy to interpret if there are very many

points
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The trace can be easier to interpret if it is summarized

by

- the cumulative posterior median, and upper and lower

credible intervals (say, 95% level)

- moving averages.

If the model has converged, additional samples from the

posterior distribution should not influence the calculation

of the mean. Running means will reveal if the posterior

mean has settled to a particular value.
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Kernel density plots

Sometimes non-convergence is reflected in a multimodal

distribution. A ”lumpy” posterior may indicate non-

convergence.

However, do not assume that the chain has converged

just because the posteriors ”look smooth”.

Another useful visual check is to partition the sample

chain up into k blocks,

{{θ(0), . . . , θ(M/k)}, . . . , {·, . . . , θ(M)}},

and use kernel density estimates for the within block dis-

tributions to look for continuity/stability in the estimates
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Autocorrelation plots

Autocorrelation plots show the serial correlation in the

chain. Some correlation between adjacent values will arise

due to the Markov nature of the algorithm. Increasing

run length should reduce the autocorrelation.

The presence of correlation indicates that the samples

are not effective in moving around through the entire pos-

terior distribution.
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The autocorrelation will be high if

- the jump function does not jump far enough

- the jump function jumps too far, into a region of low

density.

If the level of autocorrelation is high for a parameter

of interest, then a trace plot will be a poor diagnostic for

convergence.
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Formal convergence diagnostics

CODA offers four formal tests for convergence, perhaps

the two most popular one being those reported by Geweke

and those of Gelman and Rubin, improved by Brooks and

Gelman.
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Geweke’s test

Geweke (1992) proposed a convergence test based on a

time-series analysis approach. It is a formal way to inter-

pret the trace.

Informally, if the chain has reached convergence then

statistics from different portions of the chain should be

close.

For a (function of the) variable of interest, the chain

is sub-divided up into 2 “windows” containing the initial

x% (CODA default is 10%) and the final y% (CODA default

is 50%).
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If the chain is stationary, the expectations (means) of

the values should be similar.

The test is similar to the 2-sample t-test

The pooled standard deviation is estimated using the time

series spectrum.

Geweke describes a test statistic based on a standard-

ised difference in sample means. The test statistic has

a standard normal sampling distribution if the chain has

converged.
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Gelman & Rubin’s test

Gelman and Rubin (GR) (1992) proposed a conver-

gence test based on output from two or more multi-

ple runs of the MCMC simulation. This approach

was improved by Brooks and Gelman (1998). BGR is per-

haps the most popular diagnostic used today.

The approach uses several chains from different starting

values. The method compares the within and between

chain variances for each variable. When the chains have

“mixed” (converged) the variance within each sequence

and the variance between sequences for each variable will

be roughly equal.
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BGR derive a statistic which measures the potential

improvement, in terms of the estimate of the variance

in the variable, which could be achieved by running the

chains to infinity.

When little improvement could be gained, the chains

are taken as having converged.

However, it is possible that the within-variance and the

between-variance are roughly equal but the pooled and

the within confidence interval widths do not converge to

stability. The improved BGR procedure is as follows.
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1. Generate m ≥ 2 MCMC chains, each with different

initial values.

2. Exclude the burn-in period, and iterate for an n-

iteration monitored period.

3. From each individual chain the empirical (1− α) CI-

interval width is calculated; that is the difference be-

tween α
2 and (1−α/2) empirical quantiles of the first

n simulations. We obtain m within-sequence interval

widths estimates.

4. From the entire set of mn observations (pooled), the

empirical (1− α) CI-interval width is calculated.
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5. R̂ is defined as

R̂ =
width of pooled interval

mean width of within-sequence intervals
.

Usually for small n, R̂ > 1 if the initial values are chosen

dispersed enough. The statistic R̂ approaches to 1 as the

chains converge.
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The option bgr diag in WinBUGS calculates the R̂ -

based diagnostics with α = 0.2. is calculated after each

50 simulations. The width of the central 80% interval of

the pooled runs is green, the average width of the 80%

intervals within the individual runs is blue, and their ra-

tio R̂ is red - for plotting purposes the pooled and within

interval widths are normalised to have an overall maxi-

mum of one. Convergence is achieved when is close to

1, and both the pooled and within interval widths are

stable. The values can be listed to a window by double-

clicking on the figure followed by ctrl-left-mouse-click on

the window.
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Other tests

Heidelberger-Welsh: tests for stationarity of the chain,

based on Brownian bridge theory

Raftery-Lewis: based on how many iterations are nec-

essary to estimate the posterior for a given quantity; con-

sider a two-state Markov chain with 1 for exceedance of

the given quantity
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Further reading:

Cowles, M.K. and Carlin, B.P. (1996), Markov Chain

Monte Carlo Convergence Diagnostics: a Comparative

Review. Journal of the American Statistical Associa-

tion 91, pp.883 - 905.

and Brooks, S.P. and Roberts, G. O. (1998). Assessing

Convergence of Markov Chain Monte Carlo Algorithms.

Statistics and Computing 8, pp.319-335.
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Formal tests for convergence should not be taken with-

out question as evidence for convergence. Graphical plots

and examining posterior distributions for stability should

always be employed for key (functions of) variables of

interest.

Warning: Convergence does not mean that you have

a good model!
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Tricks to speed up convergence

Standardize all your variables by subtracting them from

their sample means and dividing by their sample stan-

dard deviations. This decreases the posterior correlation

between parameters.

Example: Yi ∼ N (a + bXi, 1); choose priors ∝ 1 for a

and b. The posterior correlation between a and b is:

ρa,b = − EX√
E(X) + V ar(X)

.

If |E(X)| is large relative to the sample variance of X ,

then there will be a large posterior correlation between

a and b and therefore slow convergence (due to a high

autocorrelation in the parameter simulations).
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Use WinBUGS Over-relax algorithm (tick the corre-

sponding box in the Update part). This generates mul-

tiple samples at each iteration and then selects one that

is negatively correlated with the current value. The time

per iteration increases, but the within-chain correlations

should be reduced, and hence fewer iterations may be

necessary. However, this method is not always effective.

Pick good initial values. If your initial values are close

to their posterior modes, then convergence should occur

relatively quickly.
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Just wait. Sometimes models just take a long time to

converge.

103



6.2 Tests for dependence in the chain

MCMC produces a set of dependent samples (condi-

tionally Markov)
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The Theory

From the central limit result for Markov chains we have

that

{f (θ(·))− E[f (θ)]} → N(0, σ2
f/M)

where f (θ(·)) denotes the empirical estimate for the statis-

tic of interest using the M MCMC samples,

f (θ(·)) =
1

M

M∑
i=1

f (θ(i))

and E[f (θ)] denotes the true unknown expectation. We

assume that the chain is aperiodic and irreducible, and

that σ2
f <∞
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The variance in the estimator, σ2
f , is given by

σ2
f =

∞∑
s=−∞

cov[f (θ(i)), f(θ(i+s))]

Hence, the greater the covariance between samplers, the

greater the variance in the MCMC estimator (for given

sample size M)

In Practice

The variance parameter σ2
f can be approximated using

the sample autocorrelations

Plots of autocorrelations within chains are extremely use-

ful

High autocorrelations indicate slow mixing (movement

around the parameter space), with increased variance in

the MCMC estimators (and usually slower convergence)
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A useful statistic is the Effective Sample Size

ESS = M/(1 + 2
k∑

j=1
ρ(j))

where M is the number of post burn-in MCMC samples

and ∑k
j=1 ρ(j) is the sum of the first k monotone sample

autocorrelations

The ESS can be estimated from the sample autocorre-

lation function; ESS estimates the reduction in the true

number of samples, compared to i.i.d. samples, due to

the autocorrelation in the chain

The ESS is a good way to compare competing MCMC

strategies if you standardise for CPU run time
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We call

Eff =
1

(1 + 2 ∑k
j=1 ρ(j))

,

that is the ratio of the Effective Sample Size (ESS) to the

number of replicates generated (M), the efficiency of the

MCMC.

The maximum efficiency of the MCMC is∞ and the min-

imum is −∞.

ESS is generally smaller than the size of the MCMC sam-

ple.

Estimating ESS and efficiency can be done only on the

sample from the stationary distribution!
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If run time is not an issue, but storage is, it is useful to

thin the chain by only saving one in every T samples

- clearly this will reduce the autocorrelations in the saved

samples
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7. Another Example

For each electoral precinct i = 1, . . . , p we observe the

fraction of voting-age people who turn out to vote (Ti)

and who are black (Xi), along with the number of voting-

age people (Ni). The quantities of interest, which remain

unobserved because of the secret ballot, are the fraction

of blacks who vote (βb
i ) and whites who vote (βw

i ). The

proportions βb
i and βw

i are not observed because Ti and

Xi are from different data sources (electoral results and

census data, respectively).

Note that

Ti = Xiβ
b
i + (1−Xi)β

w
i
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and

βw
i =

Ti

1−Xi
− Xi

1−Xi
βb

i

Let T ′i denote the number of voting-age people who

turn out to vote. We assume that T ′i follows a binomial

distribution with probability of success

θi = Xiβ
b
i + (1−Xi)β

w
i

and count Ni.

Next we assume that βb
i is sampled from a beta distribu-

tion with parameters cb and db and that, independently,

βw
i is sampled from a beta distribution with parameters

cw and dw.

Finally we assume that cb, db, cw and dw follow inde-

pendent exponential distributions with mean 2.
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How do we draw inference for this model?

Step 1: Calculate the posterior distribution:

p(data|βb
i , β

w
i , i = 1, . . . , p)

×p(βb
i , β

w
i , i = 1, . . . , p|cb, db, cw, dw)

×p(cb, db, cw, dw)

∝
p∏

i=1
(Xiβ

b
i + (1−Xi)β

w
i )T

′
i (1−Xiβ

b
i − (1−Xi)β

w
i )Ni−T ′i

×
p∏

i=1

Γ(cb + db)

Γ(cb)Γ(db)
(βb

i )
cb−1(1− βb

i ))
db−1

×
p∏

i=1

Γ(cw + dw)

Γ(cw)Γ(dw)
(βw

i )cw−1(1− βw
i ))dw−1

× exp(−2cb) exp(−2cw) exp(−2db) exp(−2dw)

Obtaining the marginals is not feasible, hence we use the

Gibbs sampler.
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Step 2: Calculate the full conditional distributions:

p(βb
i |βw

i , cb, db)

∝ (Xiβ
b
i + (1−Xi)β

w
i )T

′
i (1−Xiβ

b
i − (1−Xi)β

w
i )Ni−T ′i

×(βb
i )

cb−1(1− βb
i ))

db−1

and

p(βw
i |βb

i , cw, dw)

∝ (Xiβ
b
i + (1−Xi)β

w
i )T

′
i (1−Xiβ

b
i − (1−Xi)β

w
i )Ni−T ′i

×(βw
i )cw−1(1− βw

i ))dw−1

and

p(cb|βb
i , i = 1, . . . , p; db)

∝
Γ(cb + db)

Γ(cb)


p

× exp{(
p∑

i=1
log(βb

i )− 2)cb}
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and

p(db|βb
i , i = 1, . . . , p; db)

∝
Γ(cb + db)

Γ(db)


p

× exp{(
p∑

i=1
log(1− βb

i )− 2)db}

and

p(cw|βw
i , i = 1, . . . , p; dw)

∝
Γ(cw + dw)

Γ(cw)


p

× exp{(
p∑

i=1
log(βw

i )− 2)cw}

and

p(dw|βw
i , i = 1, . . . , p; dw)

∝
Γ(cw + dw)

Γ(dw)


p

× exp{(
p∑

i=1
log(1− βw

i )− 2)dw}
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Step 3: Generate a Gibbs sampler: draw random sam-

ples from each of these full conditionals, in turn updating

the variables afer each draw.

Unfortunately none of the full conditionals are standard

distributions for which pre-written subroutines are avail-

able. So we use the Metropolis algorithm (acceptance-

rejection) to sample from each of these distributions! Use

as proposal density the uniform density with mean the

current sample value and variance sufficiently large.
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Example: Data from 275 counties in four U.S. States:

Florida, Louisiana, North Carolina, and South Carolina,

in 1968

Use posterior mean to estimate:

mean of posterior distribution for blacks is 0.60 (0.04)

mean of posterior distribution for whites is 0.85 (0.02)

Compare to fraction of registered blacks in all counties:

0.56

fraction of registered whites in all counties: 0.85

Can also detect e.g. bimodality in posterior distribution

Could include covariates in model for βb
i , β

w
i
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See King, G., Rosen, O., and Tanner, M. (1999).

Binomial-Beta Hierarchical Models for Ecological Infer-

ence. Sociological Methods and Research 28, 61–90.
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8. Concluding remarks

Bayesian data analysis treats all unknowns as random

variables

Probability is the central tool used to quantify all mea-

sures of uncertainty

Bayesian data analysis is about propagating uncer-

tainty, from prior to posterior (using Bayes theorem)
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Often the posterior will not be of standard form (for

example when the prior is non-conjugate)

In these circumstances, sample based simulation offers

a powerful tool for inference

MCMC is (currently) the most general technique for

obtaining samples from any posterior density - though

it should not be used blindly!

WinBugs is a user friendly (free) package to construct

Bayesian data models and perform MCMC.
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