6. Regression and one-way analysis
of variance

Systematic relationship between explanatory vari-

able and response?
Example: Father’'s height - son’s height
Scatterplot, see lecture

Data (ZE]_, y1)7 (582, y2)7 e e ey (:Ena yn)

x'S: explanatory variables

y'S. response variables

Denote the sample variance for z1,...,zn by s2

and the sample variance for y1,...,yn by s3



The sample correlation (Pearson’s correlation

coefficient) is defined as

Lo (@ — 2) (Y — )

Sz Sy

R =

Often we abbreviate

1 n _ _
Sy = — Z (z; —2)(y; — Y)
n—3,=1
Exercise: We can write R as

R N LY — Do T 2 Yi
ynia? — (Siz)?n Siv? — (Civi)?




Recall: Simple linear regression

Model

Y,=a+4+06(x; —2)+¢, i=1,...,n

where the ¢; are independent, identically dis-

tributed, mean zero, (unknown) variance o2

The parameters of the model are «, 8, 02

[ east-squares estimates: Minimize

S (y; — a — Bz — T))2
i=1

gives

a=Y

N iy — D Ti i Yi
nY ;2 — (3; ;)2

B =



Note:

3= RY
Sx

The least-squares regression line is
y=a+ p(z—7)
If =2 then y =y, so goes through the point

of averages (z, 1)

If x inCreases by one s; then y inCreases by Rsy

R2 measures how much of the total variability

of the data is accounted for by the model.

Example Expected life spans for men and women,

see lecture.



Regression fallacy: In virtually all test-retest
situations, the bottom group on the first test
will on average show some improvement on the
second test - and the top group will on av-
erage fall back. This is the regression effect.
T he regression fallacy consists of thinking that
the regression effect must be due to something

important, not just the spread around the line.

Example: Repeated coin toss, see lecture.



Recall: If in addition each ¢, ~ N(0,02) then
the least-squares estimates are the maximum-
likelihood estimates

&, 8 are unbiased, independent,

Variance estimator

Residual sum of squares (error sum of squares)
IS

n
SSE = 3 (Y; = ¥i)?
=1

with V; = a + B(z — )



Then

IS unbiased for o




More explanatory variables: Multiple linear

regression
Data (37@',17 LiDy - 737i,(p—1); yi) fore.=1,...,n

(Example: father’'s height, mother's height,

grandfathers’ height all as explanatory variables)

Model

Yi=00+01x;1 +0cx;0+ -+ 0,171+ ¢,

fori.=1,...,n

with €;'s independent, identically distributed,

mean zero, (unknown) variance o2



Shorthand: Put

Y =(Yy,....Y)T  (nx 1) = vector

0 = (6, .. .,Hp_l)T (p x 1) — vector

e=(e1,...,en)t  (n x 1) — vector
1 211 - Z1p-1
X — ]._ xz.,l o« o o xQ,Z.j—l
1 In,l " Tpp-1

IS an n x p matrix called the design matrix; then

we can write the model as

Y = X0+ ¢



| east-Squares estimation:

Minimize
mn
S(Q) — Z (yi — 0y — 91:13@-71 — (92331-72 — ..
=1

_Hp—lxi,p—l)2

where || - || is the Lo-norm
Differentiate:
a n
—S50) = 2> w;;(y; — 00— 0171 —Ooxin— -
90 i=1
_Hp—lxﬁp—l)

with zg; = 1, SO

p—1 o

> —-S50) = —2(X'Y - X'X6)



Thus the minimizing 0 satisfies the normal equa-

tions
XT'xp =X"y.
If XX is non-singular, then we obtain

0= X'xX)"1x'y.

Example: Simple linear regression

Model

Y, =00+ 012; + ¢

Here p = 1 and



and

SO that
1
(XTx)—1 5 S X
and
X'y = 1=1"1
- ( i=1%iY; )
yielding

N




and

n> 2f - z)? = nd (z;—7)°
i=1 i=1

and
n n n
- wy Yitn) Y
i=1 =1 i=1

= > (z; —2)Y;
i=1

n
Y (mi—z2)Y;-Y)
i=1
sO this reduces to the usual estimators

Sr (2 = DY,
Y — 5z.

g =

Q)
|



Vector-valued random elements

In general, if Y = (Yy,...,Yx)! is a vector of
random variables, and

EY; = pij, Var(Y;) = of = 044, Cou(Y;,Yj) = 0
then the mean vector is

EZ: (:UJ].?"'MU'TL)T

and the variance-covariance matrix is

V() =Zyy = (0ij)1<i,j<n

If W and Y are random vectors and if L is a

deterministic matrix, then if W = LY

EW LEY

V(W) = Lv(y)L!



For €q,...,e, independent NV(0,02), we abbre-

viate
€ ~ MVYN(0, 021,)

where 1I,, is the n x n identity matrix and MVYN

stands for the multivariate normal distribution



If, in the multiple linear regression model, we
assume in addition that the errors e ~ MVN (0, 021,),
then the likelihood is

o " 1
L(0,0°) = iljlm X
exp {—1 an(y@- —a:TH)Q}
202 /2
where %T = (L2 1,...,%p—1)

Taking logarithms yields that the maximum
likelihood estimators for 8 are obtained by max-

imizing
~ > (g — 21 0)? = —(y — X0)" (y — X0)
1=1

and so again the same as the least-squares es-

timators



Distribution of 0

Assumption: X1 X is non-singular

Y =X0+¢€

with € ~ MVYN (0, 021,), then

Y ~ MVN (X8, 5°1,)
and

0 =xX'x)"1x'y.

Claim: 8 is unbiased for

Proof:

EXTX)"1xTy

T
S
|

(XTX)"IXTEYy

(XTxX)=1xTX9 = 0.



Claim: V() = o2(X1X)"1

Proof: Put B = (X!X)~1X?, then § = BY

and

V() = BV(Y)B'
= ¢°BBT
= 2(XIX)"IxXTx(x'x)1

2 (XI'x)—1.

Also 0 is a vector of linear combinations of nor-
mally distributed random variables, so: multi-
variate normal

Conclude:

0 ~ MVN (8, 02(XITX)™1)

Example: Simple linear regression



Model Y; = 6g + 012; + €;, SO

1
nY xz2 — (X ;)2 :
( Zfi:l 37@2 —2?21 Ly )

_Z;n 1 Lq n

and if Y’ _, x; = 0 then

X'X)™h =

1
nZa:,L-Q

Sioyap O

0 n
and the estimators & and (B are independent,
2
an~N (a, J—)

n

N 2
i (p.57)

as obtained before.

(XIx)=1 = X

unbiased,




Variance estimation

Use residual sum of squares RSS, SSE
Q%= (¥ - X8)T (v — X0)

The vector Y — X4 is also called vector of resid-

uals

Chapter 2 Theorem 7:
Q2

2
52 ~ Xn—p»

independent of 8

sO the estimator

IS unbiased



Tests: To test hypotheses about single param-
eters 0;, use from Chapter 2 that
bi—6
5/ (XTX)7;?

Example: see lecture.



Prediction

Task: For p-vector ¢ = (1,a1,...,a,_1) predict

response y, and give prediction interval

Case 1: ais among z;,2 = 1,...,n. have infor-
mation about ¢
predict Y = af

then

and
V(Y) =aV(@)a' = ?a(XTX)"al
SO
Y ~ N(ab, o%a(XTX)"1al)

Estimate o2 so use t,—,-distribution



two-sided 100(1 — a)% confidence interval for

y IS

a0+ tup(0/2)5 (a(XTX)"1a")?

Case 2: a is a new vector yet unobserved
Yo = ab + €g ~ N(ab, 5?)

Yo — af is again normal, mean zero, variance

V(Yo —af) = V(Yp) + 2Cou(eg, ab)
+o?a(XIX) el
= o?(1+a(X'X)"tal)
Using the independence of Yy, 8 and &, we have

YO — Qg
5/ (1 4 a(XTX)~147)

~ tn—p



Example: Simple linear regression

Model
Vi=oa+p(z; —Z) + ¢

a = (1,516‘0) then

1 (20 — )2

T~yN—1. T _ +
AR e = S G- 7
SO
Yo — (a+ B(xg — T)
—7)2
‘V (L4 5+ 500

~ tp_D

Example see lecture.



Checking the model assumptions

—

Residuals ¢; = y; — x;0

1. Constant variance? (Homoscedasticity?)
Residual plot: €;'s against y;'s: if too hetero-

geneous, transform the data

2. Linear trend? Again: residual plot

3. Normality? Normal Q-Q plot; if not normal,
then use a transformation (typically a power

transformation)

4. Independence? Plot €41 against €. corre-

lation? If so: time series analysis



