1. Let X_1, \ldots, X_n be independent and identically $\mathcal{N}(\mu, \sigma^2)$ -distributed. Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

For each case, find a function of $(\bar{X}, S^2, \mu, \sigma^2)$ having the following distributions.

- a) standard normal $\mathcal{N}(0,1)$
- b) $\chi^2(n-1)$
- c) $\chi^2(n)$
- d) t(n-1).

Derive the moment-generating function of S^2 and deduce that $ES^2 = \sigma^2$ and $VarS^2 = 2\sigma^4/(n-1)$.

2. Let X_1, X_2, \ldots, X_n be independent having χ^2 distributions with parameters r_1, r_2, \ldots, r_n , respectively. Show that

$$Y = \sum_{i=1}^{n} X_i$$

has the χ^2 -distribution with $\sum_{i=1}^n r_i$ degrees of freedom.

Conclude that, if X_1, \ldots, X_n are independent normal random variables with means μ_1, \ldots, μ_n and variances $\sigma_1^2, \ldots, \sigma_n^2$, respectively, then

$$Y = \sum_{i=1}^{n} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2$$

has the χ_n^2 -distribution.

3. A random vector \mathbf{X} is said to have the multivariate normal distribution with parameters μ and Σ if its density is

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \Sigma}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)}, \quad \mathbf{x} \in \mathbf{R}^n,$$

where Σ is an $n \times n$ symmetric matrix, assumed to be positive definite (i.e. $\mathbf{x}^t \Sigma \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$), called the *covariance matrix*, and μ is an n-vector, called the *mean vector*.

Suppose that **X** has the multivariate normal distribution with mean vector **0** and covariance matrix $\sigma^2 I_n$, where I_n is the $n \times n$ identity matrix. Let Q be an $n \times n$ symmetric, idempotent (i.e. $Q^2 = Q$) matrix of rank r, and put

$$Y = \frac{1}{\sigma^2} \mathbf{X}^T Q \mathbf{X}.$$

a) Show that for sufficiently small t the m.g.f. of Y is

$$M_Y(t) = |det(I_n - 2tQ)|^{-\frac{1}{2}}.$$

- b) Writing Q as NAN^T , where N is an orthogonal matrix whose columns are the eigenvectors of Q, deduce that Y has the χ^2_r -distribution.
- 4. Show that if X and Y are independent exponential random variables with mean 1, then $\frac{X}{Y}$ follows an F-distribution. Identify the degrees of freedom.