One-way analysis of variance

Linear model

$$\underline{Y} = \mathbf{X}\underline{\theta} + \underline{\epsilon}$$

Now the design matrix ${\bf X}$ does not necessarily have to come from a regression model, but could be some other matrix

 $\underline{\epsilon}$ is assumed to consist of i.i.d. $\mathcal{N}(0, \sigma^2)$ random variables (errors)

Seen: maximum likelihood or least squares give the normal equations

$$\mathbf{X}^T \mathbf{X} \underline{\theta} = \mathbf{X}^T \underline{Y}$$

A one-way classification model

Goal: Compare population means when there are p groups, with n_i observations in group i, for $i=1,\ldots,p$

Example: Four different fertilizers, applied to different plots of land; record the yields: is there a significant difference between the fertilizers?

Fertilizer here would be called a *factor*; one could think of more than one factor (soil type and fertilizer, e.g.)

Model

$$Y_{ij}=\mu+\alpha_i+\epsilon_{ij}, \quad j=1,\ldots,n_i; i=1,\ldots,p$$
 where $\sum_{i=1}^p n_i\alpha_i=0$

so μ is the typical value; we would like to test for $\alpha_i=\mathtt{0}, i=\mathtt{1},\ldots,p$

If all n_i have the same size n, we call this a balanced design

Write as model

$$\underline{Y} = \mathbf{X}\underline{\theta} + \underline{\epsilon}$$

with $(N = \sum_{i=1}^{p} n_i \text{ times 1})$ - vector

$$\underline{Y} = (Y_{1,1}, Y_{1,2}, \dots, Y_{1,n_1}, \dots, Y_{p,1}, Y_{p,2}, \dots, Y_{p,n_p})^T$$

and

$$\underline{\theta} = (\mu, \alpha_1, \dots, \alpha_p)^T \quad ((p+1) \times 1) - vector$$

$$\underline{\epsilon} = (\epsilon_{1,1}, \dots, \epsilon_{1,n_1}, \dots, \epsilon_{p,1}, \dots, \epsilon_{p,n_p})^T$$

which is a $(N \times 1)$ -vector,

and $N \times (p+1)$ -design matrix

$$\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Estimation

We use the notation

$$\bar{Y}_{i.} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} Y_{i,j}$$

$$\bar{Y}_{..} = \frac{1}{N} \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} Y_{i,j}$$

So \overline{Y}_i is the sample mean in group i, and \overline{Y}_i is the overall mean

Least squares: Calculate

$$\mathbf{X}^T \mathbf{X} = \begin{pmatrix} N & n_1 & n_2 & n_3 & \cdots & n_p \\ n_1 & n_1 & 0 & 0 & \cdots & 0 \\ n_2 & 0 & n_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ n_p & 0 & 0 & 0 & \cdots & n_p \end{pmatrix}$$

which is *not* invertible

$$\mathbf{X}^{T}\mathbf{X}\underline{\theta}$$

$$= (N\mu + \sum_{i=1}^{p} n_{i}\alpha_{i}, n_{1}\mu + n_{1}\alpha_{1}, \dots, n_{p}\mu + n_{p}\alpha_{p})^{T}$$

and

$$\mathbf{X}^{T}\underline{Y} = (\sum_{i=1}^{p} \sum_{j=1}^{n_{i}} Y_{i,j}, \sum_{j=1}^{n_{1}} Y_{1,j}, \cdots, \sum_{j=1}^{n_{p}} Y_{p,j})^{T}$$
$$= (N\bar{Y}..., n_{1}\bar{Y}_{1}..., \cdots, n_{p}\bar{Y}_{p}.)^{T}$$

Normal equations

$$\mathbf{X}^T \mathbf{X} \underline{\theta} = \mathbf{X}^T \underline{Y}$$

give

$$N\mu + \sum_{i=1}^{p} n_i \alpha_i = N\bar{Y}.$$

$$n_1\mu + n_1\alpha_1 = n_1\bar{Y}_1.$$

$$\vdots \qquad \vdots$$

$$n_p\mu + n_p\alpha_p = n_p\bar{Y}_p.$$

use that $\sum_{i} n_{i} \alpha_{i} = 0$: get

$$\hat{\mu} = \bar{Y}..$$

$$\hat{\alpha}_i = \bar{Y}_i. - \bar{Y}.., \quad i = 1, ..., p$$

Intuitively: If the factor levels differ in their mean parameters, then the \bar{Y}_i .'s should differ significantly from one another; equivalently, $\sum_{i=1}^{p} n_i (\bar{Y}_i - \bar{Y}_{\cdot \cdot})^2 \text{ should be large}$

Sum of Squares Decomposition

$$\sum_{i=1}^{p} \sum_{j=1}^{n_i} (Y_{i,j} - \bar{Y}_{..})^2$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{n_i} (Y_{i,j} - \bar{Y}_{i.})^2 + \sum_{i=1}^{p} n_i (\bar{Y}_{i.} - \bar{Y}_{..})^2$$

(Exercise) or

$$SST = SSE + SSF$$

with the total sum of squares

$$SST = \sum_{i=1}^{p} \sum_{j=1}^{n_i} (Y_{i,j} - \bar{Y}_{..})^2$$

the error sum of squares

$$SSE = \sum_{i=1}^{p} \sum_{j=1}^{n_i} (Y_{i,j} - \bar{Y}_{i.})^2$$

the factor sum of squares

$$SSF = \sum_{i=1}^{p} n_i (\bar{Y}_{i.} - \bar{Y}_{..})^2$$

Chapter 2 Theorem 7 gives:

Proposition 1 Under H_0 : $\alpha_1 = \alpha_2 = \dots = \alpha_p = 0$, we have that

$$\frac{SSF}{\sigma^2} \sim \chi_{p-1}^2, \quad \frac{SSE}{\sigma^2} \sim \chi_{N-p}^2,$$

and these variables are independent of each other

Put

$$MSE = \frac{1}{N - p}SSE$$

the *mean square error*, then MSE is unbiased for σ^2

Put

$$MSF = \frac{1}{p-1}SSF$$

then under H_0 we have from Chapter 2 that

$$F = \frac{MSF}{MSE} \sim F_{p-1,N-p}$$

The analysis is ususally summarized in an **ANOVA Table**:

SourceSSd.f.MSFFactorSSFp-1
$$\frac{1}{p-1}SSF$$
 $\frac{MSF}{MSE}$ ErrorSSEN-p $\frac{1}{N-p}SSE$ TotalSSTN-1

Example: Yield (transformed) by 4 fertilizers

Fertilizer	Yields	n_i	$ar{Y}_i$.
1	8, 5, -1, 6, 5, 3	6	4.33
2	7, 12, 5, 3, 10	5	7.4
3	4, -2, 1	3	1
4	1, 6, 10, 7	4	6
Total	90	18	

so that

Fertilizer	$\sum_{ij} (Y_{ij} - \bar{Y}_{i.})^2$	$n_i(\bar{Y}_{i\cdot}-\bar{Y}_{\cdot\cdot})^2$
1	47.33	2.67
2	53.2	28.8
3	18	48
4	42	4
Total	160.53	83.47

ANOVA-Table

Source	SS	d.f.	MS	F
Fertilizer	83.47	3	27.82	2.43
Error	160.53	14	11.47	
Total	244	17		

Compare 2.43 to $F_{3,14}$: not significant at 10 % level

(P-value is about 0.11)

Example: multiple regression

Multiple regression can be put in this framework; (but with a different design matrix) have sum of squares decomposition $\text{Test } H_0: \text{all } \theta_i = 0 \text{ for } i = 1, \dots, p-1$ with p-1 explanatory variables we have the ANOVA-table

Source	SS	d.f.	MS	F
Regression	SSReg	p-1	$\frac{1}{p-1}SSReg$	$\frac{MSReg}{MSE}$
Error	SSE	N-p	$\frac{1}{N-p}SSE$	
Total	SST	N-1	-	

Here,

$$SSReg = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

and

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

and

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Put

$$R^2 = \frac{SSReg}{SST}$$

then \mathbb{R}^2 measures the percentage of the variation explained by the regression

Sometimes one also used the

$$adjusted R^2 = R^2 - \frac{p-1}{n-p}(1-R^2)$$

Exercise: In the case of simple linear regression, this reduces to the same \mathbb{R}^2 as before.

Example: Polymer data, see lectures