5. Goodness of fit

Are the model assumptions plausible?

Have seen: plots, histograms, Q-Q plots

Are the model assumptions necessary?

Often the central limit theorem suffices

Are there outliers or unusual values in the data?

Check the data collection technique

Test: Discrepancy between the data and the model?

discrete: Chisquare test for goodness of fit: Pearson's Chisquare

Recall: Multinomial distribution: n balls, m cells, probability p_i for cell i, i = 1, ..., m, balls thrown independently; x_i is the count in cell i, i = 1, ..., m

$$f(\mathbf{x},(p_1,\ldots,p_n;m)) = {n \choose x_1,\ldots,x_m} p_1^{x_1}\cdots p_m^{x_m}$$

 $H_0: p_i = p_i(\theta), i = 1, ..., m; H_1: not$

$$X^{2} = \sum_{i=1}^{m} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

degrees of freedom: $dim\Theta - dim\Theta_0$

Example Compare demographic characteristics of jurors with the general population in Alameda County, California

Age	County perc.	no. jurors
21-40	42	5
41-50	23	9
51-60	16	19
61 and over	19	33
Total	100	66

Were the 66 jurors selected at random from the population?

Let p_i be the probability to select from cell i, i = 1, 2, 3, 4,

$$H_0: p_1 = .42, p_2 = .23, p_3 = .16, p_4 = .19$$

Calculate expected: for example, expected in cell 1 are $66 \times 42/100 = 27.7$

l .	1
obs.	exp.
5	27.7
9	15.2
19	10.6
33	12.5
66	66
	9 19 33

Calculate $X^2 \approx 61$; degrees of freedom = 4-1=3, $p\text{-value} \approx 0$: reject H_0 .

Example: Testing independence

Array: m rows, n columns, p_{ij} probability for row i, column j p_i . probability for row i, $p_{\cdot j}$ probability for column j

Let N_{ij} number of observations in cell (i,j) N_i . number of observations in row i $N_{\cdot j}$ number of observations in column j N total number of observations

m.l.e.'s are

$$\hat{p}_{i.} = \frac{N_{i.}}{N}$$

$$\hat{p}_{.j} = \frac{N_{.j}}{N}$$

$$\hat{p}_{ij} = \frac{N_{ij}}{N}$$

Under H_0 : rows and columns are independent:

$$p_{ij} = p_{i}.p_{\cdot j}$$
 for $i = 1, ..., m, j = 1, ..., n$

 Θ_0 has dimension (m-1)+(n-1)

For the general alternative: as $\sum_{i,j} p_{ij} = 1$ have dimension mn-1

So Chisquare test has degrees of freedom

$$mn - 1 - (m - 1) - (n - 1) = (m - 1)(n - 1)$$

Example

Are handedness and sex independent?

	Men	Women	Total
right-handed	934	1,070,	2,004
left-handed	113	92	205
ambidextrous	20	8	28
Total	1,067	1,170	2,237

Calculate expected for cell (1,1), under H_0 : percentage right-handed in sample is $2,004/2,237\times100\%=89.6\%$ Total number men in sample is 1,067 so expect $1,067\times89.6\%=956$

other cells similar, gives

Expected counts:

	Men	Women	Total
right-handed	956	1,048	2,004
left-handed	98	107	205
ambidextrous	13	15	28
Total	1,067	1,170	2,237

Calculate $X^2=12$, have $(2-1)\times(3-1)=2$ degrees of freedom p-value ≈ 0.002 , so reject H_0

Can create discrete data by binning continuous data

Rule of thumb: bin the data such that the expected number of observations in each bin is at least 5

continuous: Kolmogorov-Smirnov Statistic

i.i.d. observations from unknown c.d.f. F

Compare empirical cumulative distribution function to hypothethized cumulative distribution function F_0

$$H_0$$
: $F = F_0$

$$H_1$$
: not

test statistic

$$D_n = \sup_x |F_n(x) - F_0(x)|$$

Fact: The distribution of D_n does not depend on F_0 ; it is tabulated

What if the fit is not good?

1. Outliers

- investigate data collection process
- repeat analysis with outliers left out
- or: leave the lowest 100 $\alpha\%$ and the highest 100 $\alpha\%$ of the data out: trimming, leads to robust statistics

2. Transformations

coefficient of skewness is $\frac{\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^3}{S^3}$ should be close to 0 if data are normal

Tukey's ladder of powers lists transformatinos of the form

$$\dots, x^{-2}, x^{-1}, x^{-1/2}, \log x, x^{1/2}, x, x^2, x^3, \dots$$

For example, the transformations $y_i = \sqrt{x_i}$

$$y_i = x_i^{1/3}$$

$$y_i = \log x_i$$

 x^2, x^3, \ldots reduce negative skewness, $\ldots, x^{-2}, x^{-1}, x^{-1/2}, \log x, x^{1/2} \text{ reduce positive skewness}$ ness

Note: do not have to stick to integers for powers

Example: wages in India (see lecture)

Deciding optimal power:

- trial and error
- Box-Cox transformation (minimizes so-called Beck score variance)

3. Use tests without model assumptions

Tests just based on order statistics, such as Wilcoxon's signed rank test

leads to nonparametric procedures