4. Hypothesis tests

Estimation: confidence intervals

Now: testing hypotheses against another

typical set-up:

Hgo null hypothesis

Hq alternative hypothesis

Occam’s razor: accept the simplest explana-

tion unless evidence against it

Hg typically is the simplest explanation



T hus testing is not symmetric: we would not
like to reject Hp unless the evidence against it

IS too strong

Paradox: Often one wants to establish a more

complex explanation, hence seeks to reject Hg



Examples:

1. Toss a coin, either fair or biased .7 towards

head

p = P(Head)
HO:pZ%
H{ . p=0.7

(symmetric problem)

2. Gender discrimination on jury selection?

p = P(female)

Hgp:p : no discrimination
1-P

H <

3. Swain vs. Alabama, see

http://www.stat.ucla.edu/cases/swain/



Definition. A statistical hypothesis specifies a

family of distributions of the observations

In our framework: a set of parameters; if 6 € ©
is the whole parameter space, we would have
Hgy:0 € ©g
Hi:0 €0,

where © C ©,0; C ©, and ©gN©®; =10

The hypothesis is simple if there is only one pa-
rameter value in the set, i.e. if it specifies the
distribution completely; otherwise it is called

composite



Test: Observe z1,...,zn, Calculate test statis-
tic t(xq,...,2n); reject Hy if t takes on a value

that would be very unusual if Hy was true

A test is equivalent to specifying a set C of

sample values such that:

If x € C' then we reject Hp in favour of Hq

This set C is called the critical region of the

test.



Example Flip coin n times, let z; = 1 if the
coin lands head in the ith toss, and z; = 0 if in

the ith toss the coin lands tail

Assume that the coin flips are realizations of
i.i.d. Bernoulli random variables with unknown

probability p of success

Put
n
T =t(X)= > X;~ Bin(n,p)
i=1
HO . p = %
H{:p=0.7

Reject Hp in favour of Hy if T is large: T > c



Specify level «: Want ¢ such that

Po(T > c¢) < a

where Py denotes the probability under Hg, i.e.

here Bin(n, %)

So want ¢ such that

> (e =a

k>c
Find ¢ from Table; eg. n = 15,aa = 0.05 :
Po(T > 11) = 0.018,Py(7T > 10) = 0.059, so

choose c= 11

Note: Under Hy{, T ~ Bin(15,.7) and P{(T >

11) = 0.297 is not very large neither



Notation: Py is the probability if 6 is the true

parameter

Hgy:0 € ©g
Hi:0 €0,

The size of the test is

sup PQ(C)7
SISl

it is also called the Type I error probability

If the size of the test is o and if x € ', then we
say that the test is significant at the 100(1 —

a)% level

The power of the test is given by the curve

Py(C),0 ¢ ©¢

For H, simple, the Type II error is 1 — power



Example

z1,...,xn random sample from N(u,o02), o2
known
Ho; p = pgo
Hy ' p # po
5_
o2 /n
then

l—a = PO(X'—za/Q\/az/n < po < )_(+za/2\/02/n)

so for a test of size a« we can choose

C = {x:Z>pug+ za/Q\/az/n}
U{x:Z < po — z&/zx/az/n,oo}



Power: If pu1 # uo,

P,,(C)
= P,ul(X — Za/z\/O'Q/n > ,U:O)
+Puy (o > X + 2421/ 07 /n)

= Pu (X — p1 > 240\ 02 /n+ (po — 111))
+Puy (X — p1 < =242V o?/n+ (1o — p1))

= 1oz, M0
o2 /n

1 |z + PO
o2 /n

increases with |ug — 1]

Can adjust n such that the test has a specific

power



Connection with confidence intervals:
A pivot can also be used as a test statistic

confidence interval = the set of parameters

which we do not reject

In previous example:

C = {x:Z>ug +Za/2\/0'2/n}
U{x:Z < po — Za/z\/O'Q/n,OO}

So accept if x € C°, i.e. if

1o — z&/zx/az/n <z < pg+ za/Q\/JQ/n

i.e. accept for all upg for which

T — za/zx/az/n <po <+ za/zx/az/n



Likelihood ratio tests

Example: Toss a coin n times, either fair or

biased .7 towards head

p=P(Head) = P(X; = 1)

Hoip:%

Hq{:p=0.7

use likelihood ratio (LR)
L(3;%)
L(0.7;x)

reject if LR small

Here: t(x)=>"_; z;

L= _ ()2
L(0.7;x) (7)(0.7)t(0.3)n~

- 636

reject if LR small: if ¢ is large




General: Hg, H{ simple

Hgy 1 0 = 6

Hi:0 =01

The likelihood ratio (LR) is

L(0g; x)
L(01;x)

The likelihood ratio test (LRT ) rejects Hg when

AMx) =

A(x) small

Or: give the p-value

p = P(A(X) <A(x)]6 = bo)

reject if p-value small
p—value is the probability to observe a LR this

small or smaller when Hg is true



Example

N(u,02), with 62 known

Hg @ p = po

H{ . pn = py1, where pq is some fixed number;
assume pq < o

Fix level «

1 n . 2
(27.(.0.2)—n/26_20—2 Zz’:l(xz_NO)

Alx) =
. (2702)_n/26_#Z?:l(xi_ul)Q

LR small < log LR small:

log LR

—i S {(z; — po)? — (z; — p1)?}
i=1

1
— _272{2”’5(“1 — po) + n(u% — M%)}

as u1 < o - log LR increases <= I increases
SO: reject Hp if £ small

a<Po(X <k)



SO: reject Hy iff

— o
X<,UJO_Z()4—

Jn

Power:

1—<I><'LLO_'LL1—,ZQ) >1—P(—24) = &

g

Jn

increases if ug — @1 INCreases

IS a one-sided test



Sample-size calculation:

If we wanted to be near-certain to reject Hg
when u = ug — 0, say, and have size 0.05, then

we could fix n to force power(n) = 0.99 at

W= g —90: i.e.,

0.99 = 1 — ®(5y/n/o — 1.645)

This equation reduces to 2.326 = §/n/o —
1.645, so that

n = 02(1.645 + 2.326)? /57

IS the required sample size



Constructing good tests: The Neyman-

Pearson Lemma

Neyman-Pearson Lemma: Suppose the LRT
that rejects Hy when A\(x) < ¢ has significance
level «. Then any other test which has signif-
icance level o < o has power less or equal to

that of the LRT.

I.e.: The LRT is most powerful among all tests

of level «



Proof

Let C = (—o0, A) be the critical region of the
LRT, power
Pick any other test of level o < «; let C*

critical region, g* its power

then

Bg*—B
= Pi(XelC")-Pi(XeO)
= /*L(Hl,x)dx — /CL(Hl,X)dX
— /C*HCL(HLX)CZX + L(01,x)dx

c*NncCe

_ L6, d—/ L(67.x)d
e (01,x)dx Cr(C)e (01,x)dx

— L6, d—/ L6, x)dx.
/C*OCC (01, )dx = [ D01, x)dx

On C: L(0py,x) < AL(01,x%x)



On C¢: L((go,x) > AL(@l,X),

for some A > 0. So

A(B* - B)
< /C*ﬂCC L(0p,x)dx — /CO(C*)C L(0p,x)dx

= /*L(HO,X)dX—/CL(HO,X)dX

(add and subtract [ono+ L(0p,x)dx) and so
A(B*—-pB) < a—a"<0.

This finishes the proof.



Back to example: N(u,02); 02 known

Ho :p = po; Hytp= p1, where pg < ug
In LRT: reject Hyp iff

— o
X < 1o — 2Za——=

Jn

we only used that uq1 < pug;

Neyman-Pearson Lemma gives: test is most

powerful for all u1 < uo:

Test is uniformly most powerful (UMP):
Let H1 be a composite hypothesis. A test that
IS most powerful for every simple alternative in

Hq is said to be uniformly most powerful



Similarly: N(u, 02); 62 known
Ho:p = po;, H1 tp= p1, where pg > ug
LRT: reject Hp iff

— o
X > po + za——=

NG

so test is UMP for Hg : n = ug; H1 : u > uo

But Hy : u = uo; H1 : p # pug: thereis no UMP
test

instead: reject if |z — pug| > za/gﬁ

Quite often the case: tests are constructed
which are good, but not optimal power on both

sides of ug: two-sided tests



Constructing good tests: composite hy-

potheses

Example: N(u,o02); test for Hy : u = po; but
o2 unknown:

IS @ nuisance parameter

General: § = (01,...,0q), €ach 0, € R; assume:
take values in some open interval of R

©® parameter set

Ho:0€c©p=1{0:6,=06% ... 6 =00}

first r parameter fixed, rest unconstrained



Definition: The generalized likelihood ratio is

SuDQG@O L(97 X)
SuDQE@ L((g? X)

AMx) =

The expression sSupgeg, L(¢,x) is also called

profile likelihood

The generalized likelihood ratio test rejects Hg

when A(x) is small

Note: Always 0 < \(x) < 1 for the generalized

likelihood ratio



Example

random sample from N(u,02); 02 unknown,

test

Hg ' p = pg against Hy @ p # pg

O = {po} x (0,00); dimOg =1
© =R x (0,00), dim© = 2
0 = (u,0%)
ON—n/2 —5i5 Y oieq (wi—p)?
L(0,x) = (2m02) /26" 202 La=11"
For supgeg, L(#,x): Under Hg, the likelihood
IS maximized for the m.l.e.
o _ 1L 2
66 = — > _ (@i — uo)
n —1

In ©, the likelihood is maximized for the m.l.e.s

S (2 — 1)°

’n,:l

. 1 &
=z, 0'2:—
1



Note that

1 n 2
——= > i—1(zi—po)
L(po,53),x) = (2n58) "/2e 2%

= (2n63)"?e 2

and similarly

1 n _
L((f,57),x) (2752) /2" 552 =1 (2i=E)?

= (2762) /273

So

<( S (x — %)? }’5
| i1 (% — po)?

[ 2?21(37@' — 5)2 }
| (2 — 2)2 4+ n(T — po)?

’ (% — po)° }—’5

NIS

7N\

= <\1+ 1/77,2?:1(331_5)2

is monotone in t2(x), with t-statistic

T — [o

s/\/n

t(x) =




Small if t2 large, i.e. if t < 0 and small, or if
t > 0 and large

Testing Hgp : 4 = ug using the two-sided t-test
IS equivalent to testing it with the generalized

LRT

Moreover, expand

—2log A(x)

. n (T — pp)*
= =2 (_5) Iog{l—l— 1/n2?:1(33i—5)2}
~ (T — po)?

1/” 2?21(371' — 5)2

2

_ V(Z — po)?

J1/nSi (- 7)?
~ (t(x))?

— % in distribution



Wilks’ Theorem: Under a few conditions, as
n — oo, for the generalized LR A(x) we have,

in distribution,

—210g M(x) =~ x2,

where r = dim© — dim Oq

So: reject Hg at 5 % level, e.qg., if the observed

value of —2log X was greater than x2(.95)

In large samples, —2log A is an approximate
pivot, and can be used to obtain an approxi-

mate confidence set

{69,...,09) : —2log A(x) < x2(1 — a)}



When »r = 1, and n large, the generalized LRT
IS equivalent to constructing a two-sided test

based on the MLE; test of size a rejects Hg

when

01 — 021/ nI(0) > 2,0

(compare to confidence intervals)



random sample from N(u,02); p© known, o2

unknown, test Hg : 02 = 03 agdainst Hy : 02 #

o5

O = {05}
© = {0, x}
0 = o2

L(h,x) = (gm2)—n/2e—ﬁ S (i —pn)?

In ©, the likelihood is maximized for the m.l.e.s

> 1 >
=== (z;,—p)
;=1
Note that
1 n 2
—— > g (@j—p)
L(c3),x) = (2708) "2 270
and

L(5%),x) = (2n5°) /272



So

52\2 —53 Lim1(#i—7)%+3
)\(X) — <0-_> e 208 1 2

o5

Put

b= 1/”2?:1(3%’ _M)Q

o5

then

Mx) = t™2 ex {ﬁt ﬁ}

(x) P15 +2
and

—2logA=n(t—1—-1ogt)

iInCreases as t increases from 1, decreases as ¢

decreases from 1, so:

reject Hg if |t — 1| large



2
Under Ho, T = t(X) = (2=1)5° 2

n
90

so two-tailed test at level a: reject Hg ist >

x2(a/2) or t < x2(1 — a/2)



Example: Multinomial distribution:

n balls, m cells, probability p; for cell i, 1 =

1,...,m, balls thrown independently

x; IS the countincell 7, t=1,....m

n
FOrpmim)) = (" ity
9 o e o9 m

Exercise: M..e. ifp,=7L i=1,....,m

Ho:pi=p;i(0),i=1,...,m

Hq : not
p1()T1 - pm(9)™m
Ax) = 77 :;:Im
P1 “Pm

ﬁ (m(@)xz



and

—2log A(x)

~20 3 itog (“47)

1=1 pi
= 2 Z O; log (—Z>,
“— E;
=1
where O; = np, = x; observed count in cell 3
E; = np;(0) expected count in cell ¢ if Hg is

true

If # € R* then dim® = m — 1,dim®g = k, SO

under Hg

in distribution

—210g A(X) & X2,_1_



Taylor expansion:

x log <£> ~x— 20+ l(:z: — :130)2i
0 2 0
SO
—2log A(x)
o 5 & (P — pi(0))°
~ 2 i — Ps 0 —|— =
ni;(p pi(6)) n@; D)
T (x; — npi(6))°
— Z —=
i—=1 np;(0)
d (Oz - Ei)z
= ¥

IS called Pearson’s Chisquare-Statistic



Examples:

six-faced die, m =6, Hy:p,=1/6,i=1,....m

"the die is fair”

Hy:p;=e 4, i=1,....,m—1"Poisson”

AN

Can be used to assess goodness of fit of dis-

tributional assumptions: next chapter.



