4. Hypothesis tests

Estimation: confidence intervals

Now: testing hypotheses against another

typical set-up:

 H_0 null hypothesis

 H_1 alternative hypothesis

Occam's razor: accept the simplest explanation unless evidence against it

 H_0 typically is the simplest explanation

Thus testing is not symmetric: we would not like to reject H_0 unless the evidence against it is too strong

Paradox: Often one wants to establish a more complex explanation, hence seeks to reject H_0

Examples:

 Toss a coin, either fair or biased .7 towards head

$$p = \mathbf{P}(Head)$$

$$H_0: p = \frac{1}{2}$$

$$H_1: p = 0.7$$

(symmetric problem)

2. Gender discrimination on jury selection?

$$p = P(female)$$

$$H_0: p = \frac{1}{2}$$
: no discrimination

$$H_1: p < \frac{1}{2}$$

3. Swain vs. Alabama, see

http://www.stat.ucla.edu/cases/swain/

Definition. A statistical hypothesis specifies a family of distributions of the observations

In our framework: a set of parameters; if $\theta \in \Theta$ is the whole parameter space, we would have

 $H_0: \theta \in \Theta_0$

 $H_1:\theta\in\Theta_1$

where $\Theta_0 \subset \Theta$, $\Theta_1 \subset \Theta$, and $\Theta_0 \cap \Theta_1 = \emptyset$

The hypothesis is *simple* if there is only one parameter value in the set, i.e. if it specifies the distribution completely; otherwise it is called *composite*

Test: Observe x_1, \ldots, x_n , calculate test statistic $t(x_1, \ldots, x_n)$; reject H_0 if t takes on a value that would be very unusual if H_0 was true

A test is equivalent to specifying a set C of sample values such that:

If $x \in C$ then we reject H_0 in favour of H_1

This set C is called the *critical region* of the test.

Example Flip coin n times, let $x_i=1$ if the coin lands head in the ith toss, and $x_i=0$ if in the ith toss the coin lands tail

Assume that the coin flips are realizations of i.i.d. Bernoulli random variables with unknown probability p of success

Put

$$T = t(\mathbf{X}) = \sum_{i=1}^{n} X_i \sim Bin(n, p)$$

 $H_0: p = \frac{1}{2}$

 $H_1: p = 0.7$

Reject H_0 in favour of H_1 if T is large: T > c

Specify *level* α : Want c such that

$$\mathbf{P}_0(T>c) \leq \alpha$$

where ${\bf P}_0$ denotes the probability under H_0 , i.e. here $Bin(n,\frac{1}{2})$

So want c such that

$$\sum_{k>c} \binom{n}{k} 2^{-n} = \alpha$$

Find c from Table; e.g. $n=15, \alpha=0.05$: $\mathbf{P}_0(T>11)=0.018, \mathbf{P}_0(T>10)=0.059,$ so choose c=11

Note: Under H_1 , $T \sim Bin(15,.7)$ and $\mathbf{P}_1(T > 11) = 0.297$ is not very large neither

Notation: \mathbf{P}_{θ} is the probability if θ is the true parameter

 $H_0: \theta \in \Theta_0$

 $H_1: \theta \in \Theta_1$

The size of the test is

$$\sup_{\theta \in \Theta_0} \mathbf{P}_{\theta}(C),$$

it is also called the Type I error probability

If the size of the test is α and if $\mathbf{x} \in C$, then we say that the test is *significant* at the $100(1 - \alpha)\%$ level

The power of the test is given by the curve

$$\mathbf{P}_{\theta}(C), \theta \notin \Theta_0$$

For H_1 simple, the *Type II error* is 1 - power

Example

 x_1,\ldots,x_n random sample from $\mathcal{N}(\mu,\sigma^2)$, σ^2 known

$$H_0$$
; $\mu = \mu_0$

$$H_1: \mu \neq \mu_0$$

$$t(\mathbf{x}) = \frac{\bar{x} - \mu_0}{\sqrt{\sigma^2/n}}$$

then

$$1 - \alpha = \mathbf{P}_0(\bar{X} - z_{\alpha/2}\sqrt{\sigma^2/n} < \mu_0 < \bar{X} + z_{\alpha/2}\sqrt{\sigma^2/n})$$

so for a test of size α we can choose

$$C = \{\mathbf{x} : \bar{x} > \mu_0 + z_{\alpha/2} \sqrt{\sigma^2/n}\}$$
$$\cup \{\mathbf{x} : \bar{x} < \mu_0 - z_{\alpha/2} \sqrt{\sigma^2/n}, \infty\}$$

Power: If $\mu_1 \neq \mu_0$,

$$\begin{aligned} \mathbf{P}_{\mu_{1}}(C) \\ &= \mathbf{P}_{\mu_{1}}(\bar{X} - z_{\alpha/2}\sqrt{\sigma^{2}/n} > \mu_{0}) \\ &+ \mathbf{P}_{\mu_{1}}(\mu_{0} > \bar{X} + z_{\alpha/2}\sqrt{\sigma^{2}/n}) \\ &= \mathbf{P}_{\mu_{1}}(\bar{X} - \mu_{1} > z_{\alpha/2}\sqrt{\sigma^{2}/n} + (\mu_{0} - \mu_{1})) \\ &+ \mathbf{P}_{\mu_{1}}(\bar{X} - \mu_{1} < -z_{\alpha/2}\sqrt{\sigma^{2}/n} + (\mu_{0} - \mu_{1})) \\ &= 1 - \Phi\left(z_{\alpha/2} + \frac{\mu_{0} - \mu_{1}}{\sqrt{\sigma^{2}/n}}\right) \\ &+ \Phi\left(-z_{\alpha/2} + \frac{\mu_{0} - \mu_{1}}{\sqrt{\sigma^{2}/n}}\right) \end{aligned}$$

increases with $|\mu_0 - \mu_1|$

Can adjust n such that the test has a specific power

Connection with confidence intervals:

A pivot can also be used as a test statistic

confidence interval = the set of parameters which we do not reject

In previous example:

$$C = \{\mathbf{x} : \overline{x} > \mu_0 + z_{\alpha/2} \sqrt{\sigma^2/n}\}$$
$$\cup \{\mathbf{x} : \overline{x} < \mu_0 - z_{\alpha/2} \sqrt{\sigma^2/n}, \infty\}$$

So accept if $x \in C^c$, i.e. if

$$\mu_0 - z_{\alpha/2} \sqrt{\sigma^2/n} < \bar{x} < \mu_0 + z_{\alpha/2} \sqrt{\sigma^2/n}$$

i.e. accept for all μ_0 for which

$$\bar{x} - z_{\alpha/2} \sqrt{\sigma^2/n} < \mu_0 < \bar{x} + z_{\alpha/2} \sqrt{\sigma^2/n}$$

Likelihood ratio tests

Example: Toss a coin n times, either fair or biased .7 towards head

$$p = P(Head) = P(X_i = 1)$$

$$H_0: p = \frac{1}{2}$$

$$H_1: p = 0.7$$

use likelihood ratio (LR)

$$\frac{L(\frac{1}{2};\mathbf{x})}{L(0.7;\mathbf{x})}$$

reject if LR small

Here: $t(\mathbf{x}) = \sum_{i=1}^{n} x_i$

$$\frac{L(\frac{1}{2}; \mathbf{x})}{L(0.7; \mathbf{x})} = \frac{\binom{n}{t} 2^{-n}}{\binom{n}{t} (0.7)^t (0.3)^{n-t}}$$
$$= \left(\frac{1}{2}\right)^n \left(\frac{10}{3}\right)^n \left(\frac{3}{7}\right)^t$$

reject if LR small: if t is large

General: H_0, H_1 simple

 $H_0: \theta = \theta_0$

 $H_1: \theta = \theta_1$

The likelihood ratio (LR) is

$$\lambda(\mathbf{x}) := \frac{L(\theta_0; \mathbf{x})}{L(\theta_1; \mathbf{x})}$$

The likelihood ratio test (LRT) rejects H_0 when $\lambda(\mathbf{x})$ small

Or: give the p-value

$$p = P(\lambda(\mathbf{X}) < \lambda(\mathbf{x}) | \theta = \theta_0)$$

reject if p-value small

p-value is the probability to observe a LR this small or smaller when $H_{\rm O}$ is true

Example

 $\mathcal{N}(\mu, \sigma^2)$, with σ^2 known

 $H_0: \mu = \mu_0$

 H_1 : $\mu=\mu_1$, where μ_1 is some fixed number; assume $\mu_1<\mu_0$

Fix level α

$$\lambda(\mathbf{x}) = \frac{(2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2}}{(2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_1)^2}}$$

LR small \iff log LR small:

$$\log LR = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} \{ (x_i - \mu_0)^2 - (x_i - \mu_1)^2 \}$$
$$= -\frac{1}{2\sigma^2} \{ 2n\bar{x}(\mu_1 - \mu_0) + n(\mu_0^2 - \mu_1^2) \}$$

as $\mu_1 < \mu_0$: $\log LR$ increases $\iff \bar{x}$ increases so: reject H_0 if \bar{x} small

$$\alpha \le \mathbf{P}_0(\bar{X} < k)$$

so: reject H_0 iff

$$\bar{X} < \mu_0 - z_\alpha \frac{\sigma}{\sqrt{n}}$$

Power:

$$1 - \Phi\left(\frac{\mu_0 - \mu_1}{\frac{\sigma}{\sqrt{n}}} - z_\alpha\right) \ge 1 - \Phi(-z_\alpha) = \alpha$$

increases if $\mu_0 - \mu_1$ increases

is a one-sided test

Sample-size calculation:

If we wanted to be near-certain to reject H_0 when $\mu=\mu_0-\delta$, say, and have size 0.05, then we could fix n to force $power(\mu)=0.99$ at $\mu=\mu_0-\delta$: i.e.,

$$0.99 = 1 - \Phi(\delta\sqrt{n}/\sigma - 1.645)$$

This equation reduces to 2.326 = $\delta\sqrt{n}/\sigma$ – 1.645, so that

$$n = \sigma^2 (1.645 + 2.326)^2 / \delta^2$$

is the required sample size

Constructing good tests: The Neyman-Pearson Lemma

Neyman-Pearson Lemma: Suppose the LRT that rejects H_0 when $\lambda(\mathbf{x}) < c$ has significance level α . Then any other test which has significance level $\alpha^* \leq \alpha$ has power less or equal to that of the LRT.

I.e.: The LRT is most powerful among all tests of level $\boldsymbol{\alpha}$

Let $C=(-\infty,A)$ be the critical region of the LRT, power β

Pick any other test of level $\alpha^* \leq \alpha$; let C^* critical region, β^* its power then

$$\beta^* - \beta$$

$$= P_1(\mathbf{X} \in C^*) - P_1(\mathbf{X} \in C)$$

$$= \int_{C^*} L(\theta_1, \mathbf{x}) d\mathbf{x} - \int_{C} L(\theta_1, \mathbf{x}) d\mathbf{x}$$

$$= \int_{C^* \cap C} L(\theta_1, \mathbf{x}) d\mathbf{x} + \int_{C^* \cap C^c} L(\theta_1, \mathbf{x}) d\mathbf{x}$$

$$- \int_{C \cap C^*} L(\theta_1, \mathbf{x}) d\mathbf{x} - \int_{C \cap (C^*)^c} L(\theta_1, \mathbf{x}) d\mathbf{x}$$

$$= \int_{C^* \cap C^c} L(\theta_1, \mathbf{x}) d\mathbf{x} - \int_{C \cap (C^*)^c} L(\theta_1, \mathbf{x}) d\mathbf{x}.$$

On C: $L(\theta_0, \mathbf{x}) < AL(\theta_1, \mathbf{x})$

On C^c : $L(\theta_0, \mathbf{x}) \ge AL(\theta_1, \mathbf{x})$,

for some A > 0. So

$$A(\beta^* - \beta)$$

$$\leq \int_{C^* \cap C^c} L(\theta_0, \mathbf{x}) d\mathbf{x} - \int_{C \cap (C^*)^c} L(\theta_0, \mathbf{x}) d\mathbf{x}$$

$$= \int_{C^*} L(\theta_0, \mathbf{x}) d\mathbf{x} - \int_{C} L(\theta_0, \mathbf{x}) d\mathbf{x}$$

(add and subtract $\int_{C\cap C^*} L(\theta_0,\mathbf{x})d\mathbf{x}$) and so

$$A(\beta^* - \beta) \le \alpha - \alpha^* \le 0.$$

This finishes the proof.

Back to example: $\mathcal{N}(\mu, \sigma^2)$; σ^2 known

 $H_0: \mu = \mu_0; \ H_1: \mu = \mu_1, \ \text{where} \ \mu_1 < \mu_0$

In LRT: reject H_0 iff

$$\bar{X} < \mu_0 - z_\alpha \frac{\sigma}{\sqrt{n}}$$

we only used that $\mu_1 < \mu_0$;

Neyman-Pearson Lemma gives: test is most powerful for all $\mu_1 < \mu_0$:

Test is uniformly most powerful (UMP):

Let H_1 be a composite hypothesis. A test that is most powerful for *every* simple alternative in H_1 is said to be *uniformly most powerful*

Similarly: $\mathcal{N}(\mu, \sigma^2)$; σ^2 known

 H_0 : $\mu = \mu_0$; H_1 : $\mu = \mu_1$, where $\mu_1 > \mu_0$

LRT: reject H_0 iff

$$\bar{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

so test is UMP for H_0 : $\mu = \mu_0$; H_1 : $\mu > \mu_0$

But $H_0: \mu = \mu_0$; $H_1: \mu \neq \mu_0$: there is no UMP test

instead: reject if $|\bar{x} - \mu_0| > z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Quite often the case: tests are constructed which are good, but not optimal power on both sides of μ_0 : two-sided tests

Constructing good tests: composite hypotheses

Example: $\mathcal{N}(\mu, \sigma^2)$; test for $H_0: \mu = \mu_0$; but σ^2 unknown:

is a nuisance parameter

General: $\theta=(\theta_1,\ldots,\theta_q)$, each $\theta_i\in\mathbf{R}$; assume: take values in some open interval of \mathbf{R} Θ parameter set

$$H_0: \theta \in \Theta_0 = \{\theta: \theta_1 = \theta_1^0, \dots, \theta_r = \theta_r^0\}$$

first r parameter fixed, rest unconstrained

Definition: The generalized likelihood ratio is

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta, \mathbf{x})}{\sup_{\theta \in \Theta} L(\theta, \mathbf{x})}$$

The expression $\sup_{\theta \in \Theta_0} L(\theta, \mathbf{x})$ is also called profile likelihood

The generalized likelihood ratio test rejects H_0 when $\lambda(\mathbf{x})$ is small

Note: Always $0 \le \lambda(\mathbf{x}) \le 1$ for the generalized likelihood ratio

Example

random sample from $\mathcal{N}(\mu, \sigma^2)$; σ^2 unknown, test

 $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$

$$\Theta_0 = \{\mu_0\} \times (0, \infty); \ dim\Theta_0 = 1$$

$$\Theta = \mathbf{R} \times (0, \infty), \ dim\Theta = 2$$

$$\theta = (\mu, \sigma^2)$$

$$L(\theta, \mathbf{x}) = (2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2}$$

For $\sup_{\theta \in \Theta_0} L(\theta, \mathbf{x})$: Under H_0 , the likelihood is maximized for the m.l.e.

$$\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2$$

In Θ , the likelihood is maximized for the m.l.e.s

$$\hat{\mu} = \bar{x}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Note that

$$L(\mu_0, \hat{\sigma}_0^2), \mathbf{x}) = (2\pi \hat{\sigma}_0^2)^{-n/2} e^{-\frac{1}{2\hat{\sigma}_0^2} \sum_{i=1}^n (x_i - \mu_0)^2}$$
$$= (2\pi \hat{\sigma}_0^2)^{-n/2} e^{-\frac{n}{2}}$$

and similarly

$$L((\hat{\mu}, \hat{\sigma}^2), \mathbf{x}) = (2\pi\hat{\sigma}^2)^{-n/2} e^{-\frac{1}{2\hat{\sigma}^2} \sum_{i=1}^n (x_i - \bar{x})^2}$$
$$= (2\pi\hat{\sigma}^2)^{-n/2} e^{-\frac{n}{2}}$$

So

$$\lambda(\mathbf{x}) = \left\{ \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \mu_0)^2} \right\}^{\frac{n}{2}}$$

$$= \left\{ \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu_0)^2} \right\}^{\frac{n}{2}}$$

$$= \left\{ 1 + \frac{(\bar{x} - \mu_0)^2}{1/n \sum_{i=1}^{n} (x_i - \bar{x})^2} \right\}^{-\frac{n}{2}}$$

is monotone in $t^2(\mathbf{x})$, with t-statistic

$$t(\mathbf{x}) = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

Small if t^2 large, i.e. if t<0 and small, or if t>0 and large

Testing H_0 : $\mu=\mu_0$ using the two-sided t-test is equivalent to testing it with the generalized LRT

Moreover, expand

$$-2 \log \lambda(\mathbf{x})$$

$$= -2 \left(-\frac{n}{2}\right) \log \left\{1 + \frac{(\bar{x} - \mu_0)^2}{1/n \sum_{i=1}^n (x_i - \bar{x})^2}\right\}$$

$$\approx n \frac{(\bar{x} - \mu_0)^2}{1/n \sum_{i=1}^n (x_i - \bar{x})^2}$$

$$= \left\{\frac{\sqrt{n}(\bar{x} - \mu_0)^2}{\sqrt{1/n \sum_{i=1}^n (x_i - \bar{x})^2}}\right\}^2$$

$$\approx (t(\mathbf{x}))^2$$

$$\Rightarrow \chi_1^2 \text{ in distribution}$$

Wilks' Theorem: Under a few conditions, as $n \to \infty$, for the generalized LR $\lambda(\mathbf{x})$ we have, in distribution,

$$-2\log\lambda(\mathbf{x})\approx\chi_r^2$$

where $r = dim\Theta - \dim\Theta_0$

So: reject H_0 at 5 % level, e.g., if the observed value of $-2\log\lambda$ was greater than $\chi^2_r(.95)$

In large samples, $-2\log\lambda$ is an approximate pivot, and can be used to obtain an approximate confidence set

$$\{(\theta_1^0, \dots, \theta_r^0) : -2 \log \lambda(\mathbf{x}) < \chi_r^2 (1 - \alpha)\}$$

When r=1, and n large, the generalized LRT is equivalent to constructing a two-sided test based on the MLE; test of size α rejects H_0 when

$$|\hat{\theta}_1 - \theta_1^0| \sqrt{nI(\hat{\theta})} > z_{\alpha/2}$$

(compare to confidence intervals)

random sample from $\mathcal{N}(\mu,\sigma^2)$; μ known, σ^2 unknown, test $H_0:\sigma^2=\sigma_0^2$ against $H_1:\sigma^2\neq\sigma_0^2$

$$\Theta_0 = \{\sigma_0^2\}$$

$$\Theta = \{0, \infty\}$$

$$\theta = \sigma^2$$

$$L(\theta, \mathbf{x}) = (2\pi\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2}$$

In Θ , the likelihood is maximized for the m.l.e.s

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Note that

$$L(\sigma_0^2), \mathbf{x}) = (2\pi\sigma_0^2)^{-n/2} e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2}$$

and

$$L(\hat{\sigma}^2), \mathbf{x}) = (2\pi\hat{\sigma}^2)^{-n/2}e^{-\frac{n}{2}}$$

So

$$\lambda(\mathbf{x}) = \left(\frac{\widehat{\sigma}^2}{\sigma_0^2}\right)^{\frac{n}{2}} e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \bar{x})^2 + \frac{n}{2}}$$

Put

$$t = \frac{1/n \sum_{i=1}^{n} (x_i - \mu)^2}{\sigma_0^2}$$

then

$$\lambda(\mathbf{x}) = t^{n/2} \exp\left\{\frac{n}{2}t + \frac{n}{2}\right\}$$

and

$$-2\log\lambda = n(t-1-\log t)$$

increases as t increases from 1, decreases as t decreases from 1, so:

reject H_0 if |t-1| large

Under
$$H_0$$
, $T = t(\mathbf{X}) = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_n^2$

so two-tailed test at level α : reject H_0 is t> $\chi_n^2(\alpha/2)$ or $t<\chi_n^2(1-\alpha/2)$

Example: Multinomial distribution:

n balls, m cells, probability p_i for cell $i, i = 1, \ldots, m$, balls thrown independently

 x_i is the count in cell i, $i = 1, \ldots, m$

$$f(\mathbf{x},(p_1,\ldots,p_m;m)) = {n \choose x_1,\ldots,x_m} p_1^{x_1}\cdots p_m^{x_m}$$

Exercise: M.I.e. if $\hat{p}_i = \frac{x_i}{n}$, i = 1, ..., m

$$H_0: p_i = p_i(\theta), i = 1, ..., m$$

 H_1 : not

$$\lambda(\mathbf{x}) = \frac{p_1(\widehat{\theta})^{x_1} \cdots p_m(\widehat{\theta})^{x_m}}{\widehat{p}_1^{x_1} \cdots \widehat{p}_m^{x_m}}$$
$$= \prod_{i=1}^m \left(\frac{p_i(\widehat{\theta})}{\widehat{p}_i}\right)^{x_i}$$

and

$$-2\log \lambda(\mathbf{x}) = -2n \sum_{i=1}^{m} \hat{p}_i \log \left(\frac{p_i(\hat{\theta})}{\hat{p}_i}\right)$$
$$= 2 \sum_{i=1}^{m} O_i \log \left(\frac{O_i}{E_i}\right),$$

where $O_i=n\hat{p}_i=x_i$ observed count in cell i $E_i=np_i(\hat{\theta}) \text{ expected count in cell } i \text{ if } H_0 \text{ is}$ true

If $\theta \in \mathbf{R}^k$ then $dim\Theta = m-1, dim\Theta_0 = k$, so under H_0

in distribution

$$-2\log\lambda(\mathbf{x})\approx\chi_{m-1-k}^2$$

Taylor expansion:

$$x \log \left(\frac{x}{x_0}\right) \approx x - x_0 + \frac{1}{2}(x - x_0)^2 \frac{1}{x_0}$$

SO

$$-2 \log \lambda(\mathbf{x})$$

$$\approx 2n \sum_{i=1}^{m} (\hat{p}_i - p_i(\hat{\theta})) + n \sum_{i=1}^{m} \frac{(\hat{p}_i - p_i(\hat{\theta}))^2}{p_i(\hat{\theta})}$$

$$= \sum_{i=1}^{m} \frac{(x_i - np_i(\hat{\theta}))^2}{np_i(\hat{\theta})}$$

$$= \sum_{i=1}^{m} \frac{(O_i - E_i)^2}{E_i}$$

is called Pearson's Chisquare-Statistic

Examples:

six-faced die, m= 6, H_0 : $p_i=1/6, i=1,\ldots,m$ "the die is fair"

$$H_0: p_i = e^{-\lambda} \frac{\lambda^i}{i!}, i = 1, \dots, m-1$$
 "Poisson"

Can be used to assess goodness of fit of distributional assumptions: next chapter.