3. Estimation

data xz1,...,zn; alSO use x

assume realizations of random variables Xq,..., Xn

with joint p.d.f. f(z1,...,2n;0)
Examples

1. i.i.d. Poisson (0)

2. i.i.d. NM(u,02), here 8 = (i, 02)

3. Have n cells; Xj IS the number of balls that
land in cell j, then have Multinomial(n, p1,...,pn);



A function t = t(x) of the observations but not

of the parameter is called a statistic

If t is a statistic then

T =t(X) = t(X1, ..., Xn)

IS called an estimator - random

t(x), when used for estimation, is also called

an estimate - not a random variable

Example t(x) = = estimate, X estimator



Interval estimation

Goal: Find a(X),b(X) such that

P(a(X) < 8 < b(X)) is large and b(X) — a(X) is

small

If
Pla(X) <0< (X)) =1—-«

then (a(x),b(x)) is a 100(1 — «)% confidence

interval for 0

Note: X is random, 6 is not random!



Example:

X1,..., Xn ii.d. N(u,02), 0 = (p,02)

X —pu .
S/\/ﬁ n—1

distribution is independent of 6, soO

P <_tn—1(a/2) < it < tn—l(a/2)> =1-a,

S/V/n
and so
P {X — tn—l(a/z)% < p
<X+ tn—l(a/Q)%}
= 1—«
Choose
a(X) = X - tn_1<a/z>%
B(X) = X +t,_1(a)2)—
— n—1 \/ﬁ



Substitute X by x: 100(1 — a)% confidence

interval for u

A function ¢g(x,0) of both sample and parame-
ter whose distribution does not depend on the

parameter is called a pivot

In above example: g(x, (u,02)) = f/_”

S



Above example:

X1,..., Xniid. N(u,o2), 6 = (u,02)

pivot!

Can find c¢7,co such that distribution is inde-
pendent of 8, so

(n—1)52

o2

P<(31< <62>=1—a,

and so 100(1 — a)% confidence interval for o2

IS

Y

€2 €1

((n —1)s? (n— 1)32>
equal tail convention:

P(x2_; <c1) =P(x2_1 > )



Example: kitchen timer

Recorded times

293.7,296.2,296.4,294.0, 297.3,

293.7,294.3,291.3,295.1,296.1

T =294.81, s2=23.1232

90% c.i. for u: tg(.95) = 1.833 from table, so

(293.8,295.8)

(does not contain 300)

90% c.i. for 02; ¢; = 3.325,¢5, = 28.109 from

table, so
(1.66,8.45)

If 02 = 8.45 : 90% c.i. for u would be (293.0,296.6),

still does not contain 300



Example: Two samples X1,...,Xni.i.d. N(uy,02),
Y1,..., Y iii.d. N(uo,02), independent: then

_ _ 1 1
X—YNN(m—Mz,UQ (—-I——))
n m
and
(n—1)S% 4+ (m —1)S2 5
52 ~ Xn+m—2
put
2 (n—1)S% 4+ (m —1)S2
p n+m-—2
then

X =Y — (u1 — u2)

~ 1
SVn T

(and independent of X —Y), so

IS a pivot



Example: Fastest recorded driving speed

males: n = 17,7 = 102.1,s% = 17.05,sx =

4.13
females m = 21,y = 85.7,s% = 9.39, sy = 3.06
T—y=1635 55=135 n+m—2=236

95 % confidence interval for u1—pu»- is (7.5, 25.2),

does not contain O

Same variance? Can test for it.

Rule of thumb: Assume equal variances if nei-
ther sample standard deviation is more than

twice that of the other standard deviation.



Pivot not always available.

Point estimation

Put § = T(X) estimator; Criteria:

e Unbiased: Ey(0) = [0f(x,0)dx =60

(in discrete case replace integral by sum)

The bias is defined as
bias(f) = Ey(6 — 0)

(Often omit subscript 6)

e small variance

e related to a known distribution



The Methods of Moments (M.O.M.)

Assume Xq,..., X, i.i.d. with p.d.f. f(z,0)

1. For a function h put

ﬁ:%iM&)

2. Then

1 mn
EH = =) Eh(X;)
=1

/h@ﬁ@mm@::kw)

(in discrete case replace integral by sum)

3. Solve

k(0) = A



for 0: the solution @ is called the method

of moments estimator (m.o.m. estimator)

Example

Random sample from U(0,6)
1. hi(z) =2, H=X
2. k() =E(X)=12

2

3. Solve equation:

S~
||

N
<



Example: N (i, 02) with 8 = (u, 02)

1. hi(z) = z, ho(z) = 22

2. EA{ = u,EH> = u? + 62

3. Solve equations:

SO

Note that E52 = ”n;lch, so this is not unbiased



Often: h(z) = zF for some k; pu. = EXF is

called the kth moment



Maximume-Likelihood Estimators (M.L.E.)

Recall that the likelihood of the parameter 6

given x is

L(0;x)= f(z1,...,2n;0)

Maximum-likelihood-estimator: § such that L(4, x)

IS maximized

In random sample of size n:

L(6,x) = ]] f(=4,6)
=1

7=



Example: U(]0,#]) again

f(a.6) = 51(0 < & < 0)

n
L(;x)=6"" ] 1(0 < z; <)
1=1
SO

L(O;x)=60""1(0 < minx;; maxz; <0)
(/ (/

increases in max; x;, SO § = max; ;

Variant: U(0,80)

F(2.0) = %1(0 <z <0)

Note: § = max;z; but L(f,x) = 0, so m.l.e.

does not exist



Variant: U([0 — %, 6 + %]);

f(2,0) =10 —-1/2<z<86+1/2)

n
[J]1(6—-1/2<2;,<6+1/2)
1 =1
10 <minx; +1/2;0 > maxx; —1/2)
(] (/

L(0;x)

IS maximal for any

€ [minxg; +1/2; maxx; —1/2)]

So m.l.e. not unique



Special case: exponential family

An exponential family has a p.d.f. of the form
F(2.0) = eli=1 PiOhi(@)=K(@)+b(z) ;¢ 4

where A does not depend on 6

The quantities n;, = p;(0) are called the natural

parameters of the family



Examples:

1. Be(0): f(z,0) =6%(1—-0)1"7% z=0,1

f(z,0) = ¢"(1—9)'~*
- () a0

1-—-46
= exp {a:log (%_9) + log(1 — 9)}
choose £k =1,
b(x) =0,h(x) =2, K(0) = —log(1 —0),

p(9) = log (1Z5)

2. Exp(8): f(z,0) = 6% for & > 0; choose
b(x) =0,h(x) = —2,K(0) = —log 8

3. X%, when p is considered as a continuous

function



Also: Poisson, Normal, and many more

Not: Cauchy, F, t: cannot be written in re-

quired form

Not: U(0,#): support depends on parameters

Fact: If X has an exponential family distribu-

tion, so does any one-to-one function of X



For Xq,..., Xy 1.i.d. from 1-dim exponential

family, 6 natural parameter:
L(0, x) = /X h@))=nK©0)+3 b(a;)
SO
() =log L(8) = 60> h(z;) —nK(O)+ > b(z;)
and
I'(0) =Y h(zj) — nk(8)

with k(8) = K'(0); put equal to zero: shows

that the m.l.e. in this case is also a m.o.m.

Fact: If the distribution comes from an expo-
nential family and if it has a m.l.e. then the

m.l.e. IS unique.



Invariance: Let n be a function, then the m.l.e.

of n(0) is n(h).

Proof: Let

L*(r,x) = sup L(0,x)
{0:n(0)=1}

then the m.l.e. of n(#) is the value 7* that

maximizes L*

The maxima of L* and L coincide:

L*(t*,x) = sup sup L(8,x)
T {om(0)=1}
= sup L(0,x)
0
= L(0,x)
Furthermore
L(6,x) = sup L(0,x)

{91"7(9)A=77(9A)}
= L*(n(9),x)



T his finishes the proof.

Possible problems with m.l.e.:

- The m.l.e. may not exist

- It may not be unique

- It may not have a closed form expression.



Iteration procedure for m.l.e.

Assume 0 € R

Newton-Raphson: Let

ol
U=——
o0
(score function) and
2
J p— _ﬂ
062

(observed information) then 6 solves U(f) =0

Taylor:

U@) ~ U®O*) — J0%) (0 - 6%)

Hence

0 ~ 0%+ J-He"U(H)



Given an initial guess 6(9) for §, e.g. obtained

by m.o.m., update estimate by
plk+1) ~ k) 4 =gty (a(k))
Terminate when

I p(k+1) _ g(k) 1< e

For higher-dimensional 6#: use gradient vector

U, Hessian matrix J:



Example: Binomial(n, @), observe x

10) = zIn(8) 4+ (n—a)In(1 —6) + log (Z)
vy = —g+1-%
10 = @t a ez

Assume n = 5,2 = 2,¢ = 0.01 (in practice

rather e = 10~°): guess 8(0) = 0.55

U(Q‘(O))
a(1)

3.03

Q

99 + 771N (69 ~ 0.40857

Q

U0y ~ 0.1774

72 ~ 1) 4+ -1 @)Y ~ 0.39994

Now |8(2) — §(1)| < 0.01 so stop

Compare: analytically, § = =04



Modification: Fisher Scoring Method

Replace J((k)) py 1(8(K)), where
321(9,X)}

1(0) = E, {— 2



Large sample distribution

Assume here Xq1, Xo,... i.i.d.

Recall CLT: If X1, X>,... i.l.d. mean u, vari-
ance o2, then in distribution
X —p
o/\/n

— N(0,1)

M.o.m. asymptotics: 4 solution of H = k(0)

Theorem 1 Assume that k" (0) exists. In large

samples, in distribution

@z]\f(@ 7,(6) )

n(k'(6))?

where

oR0) = [ (@)1 (@, 0)dw — ((9))?



Proof. Recall H = 1y | h(X;), and EA =
k()

CLT yields, in distribution

H — k(0)
op()/v/n
and (Taylor)

— N(0,1)

H=Fk() =~k(0) —6—-0)K(®

SO
(0 —0E'(0) _
o) N O
SO
(0 — 0)K'(8) ~ N (o, %a%(@))
and

" o2(0) >
~ h
9”N<9’n<k'<9>>2 ’

which is the assertion.



Example X ~ f(z,0) = 0e=? for z > 0 choose
h(z) = z, then EA = E(X) = k() = 071,
K'(0) =602



M.l.e. asymptotics

Definition The function
821(6, x)
() = FE ’

. /82 log f(z, )
o 562

IS called Fisher’s information per observation

821(0, x)
ol ")
. /82Iogf(x,9)
- 062

IS called Fisher’s information for a sample of

f(x,0)dx

In(8)

f(x,0)dx

Size n



Regularity condition R:

(A) The range of values z does not depend on

0
(B) the first 3 partial derivatives w.r.t. 6 of f

are integrable w.r.t. z

Theorem 2 Under (R), Fisher’s information

for a sample of size n

2 X
1(8) — _/a longe( 0)

2
_ / <8Iog f(x,9)> £(x. 0)dx

£(x, 0)dx

00



Proof. We have

/f(x,@)dx =1

for all 8, so differentiate

_10f(x,0)
0 _/ 00 0%
/ <8Iog £(x.6)
90

) £(x,0)dx

!/
as 8'§gf =]} differentiate again:

62 1og f(x,0)
0 = [T T (x. 0)dx

9109 f(x,0)\ f(x,0)
+/< 50 ) o0 X

. /82 log f(x,0)
o 520

2
+/<8Iog f(x,9)> f(x. 8)dx

where we applied mogf J} again; this finishes

£(x,0)dx

the proof.



Theorem 3 Under (R), random sample, asn —

00,

" 1 1
1N (0.5 ) =N (0 )

Sketch of Proof. Under random sample,

1(0,X) = En: log f(X;,0)
i=1

AsSsume
Ol
Taylor:
or 8l| A
o0  99'0=Y
021

0 —0)—=|,—nx,
'I'( )8(92|0_0
where 6* is between 6 and 0: so

1 ol 021
= = /n(0—0 o,
NEL V(0 =) gz lo=s

(1)



Note

100 1 2”: dlog f(X;,0)
N N a6

and
dlog f(X;,0 o 0
p0109 f(X;, ):/ 09 /(.0) . 9ydx = 0
00 00
and

>
E{<3|09 f(Xi79)> } — 1(6)
06

so by C.L.T.

1 0l
ﬁ@ ~ N(0,1(60))

AlSo

62 log f(X,0) _
B — _1(9),

so by the law of large numbers

821(6; X)
ndo?

— —1(0) (2)

in probability.



Assume 6* — 0 in probability, then (2) also true

for 6*

Collect; (1) gives

) 1 0l ( 82 -1
g — 60 Iy

1 e
_I(—H)N(O,I(H)) in distribution

Q

1
= N |0,——| in distribution
1(0)
SO, in distribution,

- 1
0~ N |0, :
nl(6)
This finishes the proof.




Example. X1, Xo,...i.i.d. Bernoulli (8), § =X
L(6,x) = 62 %i(1 — g)"— 2%

and

1(0,x) =) =z;(log(#) —log(1—6))+nlog(l—0)

SO
ol 1 1 n
o0~ =TT g2 T g
- G-
1—6\0
and

A n? (£)2 7
(%) - (1—9)2<92 _25+1>
and EX = ¢,

0(1L—0) |

n

E(X?) = Var(X) + 6% = 02,

SO



910, X)\ ?
1n.(6) E{( o )}
B n2 6(1 —0)
o

n

(1 —6)
Note: In(8) = (Var(X))~1

nb2 +9__2 +1>

AlSoO

021 n (x 1) n _
- = _ — — T
D02 (1—-0)2\6 62(1 —6)

SO

021 n 6 no
( 392(X)> (1-6)2 (5_1) +92(1—9)

n

6(1L—0)

gives the same answer, as it should.




Confidence intervals from point estimators

If § ~ N(0,02(6)) then

Vvn(d —6)
o(0)

thus have approximate pivot

— N(0,1) in distribution

D)

As 6 unknown: replace by o ), the so-

a(9)
Jn

3

called standard error

Then

l—o ~ P(g—Za/2%<9
_ 4

gives an approximate 100 (1 — a)% confidence

interval



Example. Random sample, f(z,0) = #e= %% for

x>0
Then 6 = £ and I1(f) = 45, O
_ 62
9%]\/(9,—)
n
and also
_ 62
9%]\/(9,—)
n

gives approximate 95% confidence interval

1 1 1 1.96
—:|:196 1+ ——
\/_:13 z vn

Warning: left limit can be less than O

Rule of Thumb: approximation good if n > 30;
If underlying distribution is symmetric: already

reasonably good for n > 20



Small sample properties

T = t(X) estimator; X density f(x,0)
Bias b(0) = Ey(T) — 0

Mean-square error (M.S.E.)

Eo{(T — 6)?} = Vary(T) + b(6)?

Would like: small bias and small m.s.e.



Example: X1, Xo,... 1.1.d. U([O,H]);

~ ~ n—+1
0=Xm), 0= X(n)
n
Ef = 40 not unbiased, E6 = 0, but
~ n
Var(0) = 02
(n+1)2(n+2)
vVersus
Var(d) L 025 var(d)
ar — ar
n(n + 2)



Theorem 4 Cramer-Rao lower bound (In-
formation inequality

Assumptions: Xq,..., X, sample, density f(x,0),
T unbiased, and (R)

T hen

1

Var(T(X)) > .0

Note: Under regularity (R), MLE is asymp-
totically unbiased, achieves Cramer-Rao lower

bound asymptotically



Proof. T unbiased, soO

§ = /t(x)f(x,é’)dx

Differentiate both sides w.r.t. 6:
1= [0 1 (x.0)d
pm— X )— X X
006 ’

/t(x)f(x,@)(% 09 £(x, 0)dx

— E (T(X)(% 0g £(X, 9))

Cauchy-Schwarz inequality: (stated in statisti-

cal terms) For any two random variables,
(Cov(U,V))? < Var(U)Var(V)
Put
0
U=T(X), V=_,l0gf(X0)

then



EV = /(%Iog f(x,é’)) F(x,0)dx

5
— /%f(x,@)dx

SO

Cov(U,V) = E(UV) — E(U)E(V) = E(UV) = 1

and

2
Var(V) = E (%Iog f(X,H)) = In(0),

SO

COU(U,V)Q_ 1
Var(V) — In(9)

T his finishes the proof.

VarT(X) >




Extension: T(X) biased, bias b(8), then
db\ 2

@)

In(9)

VarT(X) > <1

Proof: As before, only,

E(T(X)) = 6+ b(6) = [ t(x)f(x,0)dx
Differentiate both sides with respect to 8; gives
db
]_ -
T do
instead of 1; and then

db
Cou(U,V) =14+ 2.
ov( ) + 7



