3. Estimation

data x_1, \ldots, x_n ; also use x

assume realizations of random variables X_1, \ldots, X_n with joint p.d.f. $f(x_1, \ldots, x_n; \theta)$

Examples

- 1. i.i.d. Poisson (θ)
- 2. i.i.d. $\mathcal{N}(\mu, \sigma^2)$, here $\theta = (\mu, \sigma^2)$
- 3. Have n cells; X_j is the number of balls that land in cell j, then have Multinomial (n, p_1, \ldots, p_n) ; with $\sum_{j=1}^n p_j = 1$

A function $t = t(\mathbf{x})$ of the observations but not of the parameter is called a *statistic*

If t is a statistic then

$$T = t(\mathbf{X}) = t(X_1, \dots, X_n)$$

is called an estimator - random

 $t(\mathbf{x})$, when used for estimation, is also called an *estimate* - not a random variable

Example $t(\mathbf{x}) = \bar{x}$ estimate, \bar{X} estimator

Interval estimation

Goal: Find $a(\mathbf{X}), b(\mathbf{X})$ such that

 $\mathbf{P}(a(\mathbf{X}) < \theta < b(\mathbf{X}))$ is large and $b(\mathbf{X}) - a(\mathbf{X})$ is small

If

$$P(a(X) < \theta < b(X)) = 1 - \alpha$$

then $(a(\mathbf{x}), b(\mathbf{x}))$ is a $100(1 - \alpha)\%$ confidence interval for θ

Note: X is random, θ is not random!

Example:

$$X_1,\ldots,X_n$$
 i.i.d. $\mathcal{N}(\mu,\sigma^2)$, $\theta=(\mu,\sigma^2)$
$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$$

distribution is independent of θ , so

$$\mathbf{P}\left(-t_{n-1}(\alpha/2) < \frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{n-1}(\alpha/2)\right) = 1 - \alpha,$$

and so

$$\mathbf{P}\left\{\bar{X} - t_{n-1}(\alpha/2) \frac{S}{\sqrt{n}} < \mu\right\}$$

$$< \bar{X} + t_{n-1}(\alpha/2) \frac{S}{\sqrt{n}}$$

$$= 1 - \alpha$$

Choose

$$a(\mathbf{X}) = \bar{X} - t_{n-1}(\alpha/2) \frac{S}{\sqrt{n}}$$
$$b(\mathbf{X}) = \bar{X} + t_{n-1}(\alpha/2) \frac{S}{\sqrt{n}}$$

Substitute ${\bf X}$ by ${\bf x}$: $100(1-\alpha)\%$ confidence interval for μ

A function $g(\mathbf{x}, \theta)$ of both sample and parameter whose distribution does not depend on the parameter is called a *pivot*

In above example: $g(\mathbf{x}, (\mu, \sigma^2)) = \frac{\bar{x} - \mu}{s/\sqrt{n}}$

Above example:

$$X_1, \ldots, X_n$$
 i.i.d. $\mathcal{N}(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2)$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
:

pivot!

Can find c_1, c_2 such that distribution is independent of θ , so

$$\mathbf{P}\left(c_1 < \frac{(n-1)S^2}{\sigma^2} < c_2\right) = 1 - \alpha,$$

and so $100(1-\alpha)\%$ confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{c_2}, \frac{(n-1)s^2}{c_1}\right)$$

equal tail convention:

$$P(\chi_{n-1}^2 < c_1) = P(\chi_{n-1}^2 > c_2)$$

Example: kitchen timer

Recorded times

293.7, 296.2, 296.4, 294.0, 297.3,

293.7, 294.3, 291.3, 295.1, 296.1

 $\bar{x} = 294.81, \quad s^2 = 3.1232$

90% c.i. for μ : $t_0(.95) = 1.833$ from table, so

(293.8, 295.8)

(does not contain 300)

90% c.i. for σ^2 : $c_1 = 3.325, c_2 = 28.109$ from table, so

(1.66, 8.45)

If $\sigma^2=8.45$: 90% c.i. for μ would be (293.0, 296.6), still does not contain 300

Example: Two samples X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu_1, \sigma^2)$,

 Y_1, \ldots, Y_m i.i.d. $\mathcal{N}(\mu_2, \sigma^2)$, independent; then

$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n} + \frac{1}{m}\right)\right)$$

and

$$\frac{(n-1)S_X^2 + (m-1)S_Y^2}{\sigma^2} \sim \chi_{n+m-2}^2$$

put

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

then

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$$

(and independent of $\bar{X} - \bar{Y}$), so

$$\frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{s\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

is a pivot

Example: Fastest recorded driving speed

males: $n=17, \bar{x}=102.1, s_X^2=17.05, s_X=4.13$

females $m = 21, \bar{y} = 85.7, s_Y^2 = 9.39, s_Y = 3.06$

$$\bar{x} - \bar{y} = 16.35$$
, $s_p^2 = 13.5$, $n + m - 2 = 36$

95 % confidence interval for $\mu_1 - \mu_2$ is (7.5, 25.2), does not contain 0

Same variance? Can test for it.

Rule of thumb: Assume equal variances if neither sample standard deviation is more than twice that of the other standard deviation.

Pivot not always available.

Point estimation

Put $\hat{\theta} = T(\mathbf{X})$ estimator; *Criteria*:

• Unbiased: $\mathbf{E}_{\theta}(\widehat{\theta}) = \int \widehat{\theta} f(\mathbf{x}, \theta) d\mathbf{x} = \theta$ (in discrete case replace integral by sum) The *bias* is defined as

$$bias(\hat{\theta}) = E_{\theta}(\hat{\theta} - \theta)$$

(Often omit subscript θ)

- small variance
- related to a known distribution

The Methods of Moments (M.O.M.)

Assume X_1, \ldots, X_n i.i.d. with p.d.f. $f(x, \theta)$

1. For a function h put

$$\bar{H} = \frac{1}{n} \sum_{i=1}^{n} h(X_i)$$

2. Then

$$E\bar{H} = \frac{1}{n} \sum_{i=1}^{n} Eh(X_i)$$
$$= \int h(x)f(x,\theta)dx =: k(\theta)$$

(in discrete case replace integral by sum)

3. Solve

$$k(\theta) = \bar{H}$$

for θ ; the solution $\tilde{\theta}$ is called the *method* of moments estimator (m.o.m. estimator)

Example

Random sample from $U(0,\theta)$

1.
$$h(x) = x$$
, $\bar{H} = \bar{X}$

2.
$$k(\theta) = E(X) = \frac{\theta}{2}$$

3. Solve equation:

$$\tilde{\theta} = 2\bar{X}$$

Example: $\mathcal{N}(\mu, \sigma^2)$ with $\theta = (\mu, \sigma^2)$

1.
$$h_1(x) = x, h_2(x) = x^2$$

2.
$$E\bar{H}_1 = \mu, E\bar{H}_2 = \mu^2 + \sigma^2$$

3. Solve equations:

$$\tilde{\mu} = \bar{X}$$

$$\tilde{\mu}^2 + \tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

SO

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

Note that $\mathbf{E} \tilde{\sigma}^2 = \frac{n-1}{n} \sigma^2$, so this is not unbiased

Often: $h(x) = x^k$ for some k; $\mu_k = EX^k$ is called the kth moment

Maximum-Likelihood Estimators (M.L.E.)

Recall that the *likelihood* of the parameter θ given ${\bf x}$ is

$$L(\theta; \mathbf{x}) = f(x_1, \dots, x_n; \theta)$$

Maximum-likelihood-estimator: $\widehat{\theta}$ such that $L(\theta, \mathbf{x})$ is maximized

In random sample of size n:

$$L(\theta, \mathbf{x}) = \prod_{i=1}^{n} f(x_i, \theta)$$

Example: $U([0, \theta])$ again

$$f(x,\theta) = \frac{1}{\theta} \mathbf{1}(0 \le x \le \theta)$$

$$L(\theta; \mathbf{x}) = \theta^{-n} \prod_{i=1}^{n} \mathbf{1}(0 \le x_i \le \theta)$$

SO

$$L(\theta; \mathbf{x}) = \theta^{-n} \mathbf{1}(0 \le \min_{i} x_{i}; \max_{i} x_{i} \le \theta)$$

increases in $\max_i x_i$, so $\hat{\theta} = \max_i x_i$

Variant: $U(0,\theta)$

$$f(x,\theta) = \frac{1}{\theta} \mathbf{1}(0 < x < \theta)$$

Note: $\hat{\theta} = \max_i x_i$ but $L(\hat{\theta}, \mathbf{x}) = 0$, so m.l.e. does not exist

Variant: $U([\theta - \frac{1}{2}, \theta + \frac{1}{2}]);$

$$f(x,\theta) = 1(\theta - 1/2 \le x \le \theta + 1/2)$$

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} \mathbf{1}(\theta - 1/2 \le x_i \le \theta + 1/2)$$

= $\mathbf{1}(\theta \le \min_{i} x_i + 1/2; \theta > \max_{i} x_i - 1/2)$

is maximal for any

$$\theta \in [\min_{i} x_i + 1/2; \max_{i} x_i - 1/2)]$$

So m.l.e. not unique

Special case: exponential family

An exponential family has a p.d.f. of the form

$$f(x,\theta) = e^{\sum_{i=1}^{k} p_i(\theta) h_i(x) - K(\theta) + b(x)}, \quad x \in A,$$

where A does not depend on heta

The quantities $\eta_i = p_i(\theta)$ are called the *natural* parameters of the family

Examples:

1. $Be(\theta)$: $f(x,\theta) = \theta^x (1-\theta)^{1-x}$, x = 0, 1

$$f(x,\theta) = \theta^{x} (1-\theta)^{1-x}$$

$$= \left(\frac{\theta}{1-\theta}\right)^{x} (1-\theta)$$

$$= \exp\left\{x \log\left(\frac{\theta}{1-\theta}\right) + \log(1-\theta)\right\}$$

choose k = 1,

$$b(x) = 0, h(x) = x, K(\theta) = -\log(1 - \theta),$$

$$p(\theta) = \log\left(\frac{\theta}{1 - \theta}\right)$$

- 2. Exp(θ): $f(x,\theta) = \theta e^{-\theta x}$ for x > 0; choose $b(x) = 0, h(x) = -x, K(\theta) = -\log \theta$
- 3. χ_p^2 , when p is considered as a continuous function

Also: Poisson, Normal, and many more

Not: Cauchy, F, t: cannot be written in required form

Not: $U(0,\theta)$: support depends on parameters

Fact: If X has an exponential family distribution, so does any one-to-one function of X

For X_1, \ldots, X_n i.i.d. from 1-dim exponential family, θ natural parameter:

$$L(\theta, \mathbf{x}) = e^{\theta \sum h(x_j) - nK(\theta) + \sum b(x_j)}$$

SO

$$l(\theta) = \log L(\theta) = \theta \sum h(x_j) - nK(\theta) + \sum b(x_j)$$

and

$$l'(\theta) = \sum h(x_j) - nk(\theta)$$

with $k(\theta) = K'(\theta)$; put equal to zero: shows that the m.l.e. in this case is also a m.o.m.

Fact: If the distribution comes from an exponential family and if it has a m.l.e. then the m.l.e. is unique.

Invariance: Let η be a function, then the m.l.e. of $\eta(\theta)$ is $\eta(\widehat{\theta})$.

Proof: Let

$$L^*(\tau, \mathbf{x}) = \sup_{\{\theta: \eta(\theta) = \tau\}} L(\theta, \mathbf{x})$$

then the m.l.e. of $\eta(\theta)$ is the value τ^* that maximizes L^*

The maxima of L^* and L coincide:

$$L^*(\tau^*, \mathbf{x}) = \sup_{\substack{\tau \\ \{\theta : \eta(\theta) = \tau\}}} L(\theta, \mathbf{x})$$
$$= \sup_{\substack{\theta \\ }} L(\theta, \mathbf{x})$$
$$= L(\widehat{\theta}, \mathbf{x})$$

Furthermore

$$L(\hat{\theta}, \mathbf{x}) = \sup_{\{\theta: \eta(\theta) = \eta(\hat{\theta})\}} L(\theta, \mathbf{x})$$
$$= L^*(\eta(\hat{\theta}), \mathbf{x})$$

This finishes the proof.

Possible problems with m.l.e.:

- The m.l.e. may not exist
- It may not be unique
- It may not have a closed form expression.

Iteration procedure for m.l.e.

Assume $\theta \in \mathbf{R}$

Newton-Raphson: Let

$$U = -\frac{\partial l}{\partial \theta}$$

(score function) and

$$J = -\frac{\partial^2 l}{\partial \theta^2}$$

(observed information) then $\hat{\theta}$ solves $U(\theta) = 0$

Taylor:

$$U(\hat{\theta}) \approx U(\theta^*) - J(\theta^*)(\hat{\theta} - \theta^*)$$

Hence

$$\hat{\theta} \approx \theta^* + J^{-1}(\theta^*)U(\theta^*)$$

Given an initial guess $\theta^{(0)}$ for $\hat{\theta}$, e.g. obtained by m.o.m., update estimate by

$$\widehat{\theta}^{(k+1)} \approx \widehat{\theta}^{(k)} + J^{-1}(\widehat{\theta}^{(k)})U(\widehat{\theta}^{(k)})$$

Terminate when

$$\|\hat{\theta}^{(k+1)} - \hat{\theta}^{(k)}\| < \epsilon$$

For higher-dimensional θ : use gradient vector \underline{U} , Hessian matrix J:

$$\underline{\hat{\theta}}^{(k+1)} \approx \underline{\hat{\theta}}^{(k)} + J^{-1}(\underline{\hat{\theta}}^{(k)})\underline{U}(\underline{\hat{\theta}}^{(k)})$$

Example: $Binomial(n, \theta)$, observe x

$$l(\theta) = x \ln(\theta) + (n - x) \ln(1 - \theta) + \log {n \choose x}$$

$$U(\theta) = -\frac{x}{\theta} + \frac{n - x}{1 - \theta}$$

$$J(\theta) = \frac{x}{\theta^2} + \frac{n - x}{(1 - \theta)^2}$$

Assume $n=5, x=2, \epsilon=0.01$ (in practice rather $\epsilon=10^{-5}$); guess $\widehat{\theta}^{(0)}=0.55$

$$U(\hat{\theta}^{(0)}) \approx 3.03$$

$$\hat{\theta}^{(1)} \approx \hat{\theta}^{(0)} + J^{-1}(\hat{\theta}^{(0)})U(\hat{\theta}^{(0)}) \approx 0.40857$$

$$U(\hat{\theta}^{(1)}) \approx 0.1774$$

$$\hat{\theta}^{(2)} \approx \hat{\theta}^{(1)} + J^{-1}(\hat{\theta}^{(1)})U(\hat{\theta}^{(1)}) \approx 0.39994$$
Now $|\hat{\theta}^{(2)} - \hat{\theta}^{(1)}| < 0.01$ so stop

Compare: analytically, $\hat{\theta} = \frac{x}{n} = 0.4$

Modification: Fisher Scoring Method

Replace $J(\hat{\theta}^{(k)})$ by $I(\hat{\theta}^{(k)})$, where

$$I(\theta) = E_{\theta} \left\{ -\frac{\partial^2 l(\theta, \mathbf{x})}{\partial^2 \theta} \right\}$$

Large sample distribution

Assume here X_1, X_2, \ldots i.i.d.

Recall CLT: If X_1, X_2, \ldots i.i.d. mean μ , variance σ^2 , then in distribution

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}} o \mathcal{N}(0,1)$$

M.o.m. asymptotics: $\hat{\theta}$ solution of $\bar{H} = k(\theta)$

Theorem 1 Assume that $k''(\theta)$ exists. In large samples, in distribution

$$\widehat{\theta} \approx \mathcal{N}\left(\theta, \frac{\sigma_h^2(\theta)}{n(k'(\theta))^2}\right),$$

where

$$\sigma_h^2(\theta) = \int (h(x))^2 f(x,\theta) dx - (k(\theta))^2$$

Proof. Recall $\bar{H} = \frac{1}{n} \sum_{i=1}^{n} h(X_i)$, and $\mathbf{E}\bar{H} = k(\theta)$

CLT yields, in distribution

$$rac{ar{H}-k(heta)}{\sigma_h(heta)/\sqrt{n}} o \mathcal{N}(0,1)$$

and (Taylor)

$$\bar{H} = k(\hat{\theta}) \approx k(\theta) - (\hat{\theta} - \theta)k'(\theta)$$

50

$$\frac{(\widehat{\theta} - \theta)k'(\theta)}{\sigma_h(\theta)/\sqrt{n}} \approx \mathcal{N}(0, 1)$$

SO

$$(\widehat{\theta} - \theta)k'(\theta) \approx \mathcal{N}\left(0, \frac{1}{n}\sigma_h^2(\theta)\right)$$

and

$$\widehat{\theta} \approx \mathcal{N}\left(\theta, \frac{\sigma_h^2(\theta)}{n(k'(\theta))^2}\right),$$

which is the assertion.

Example $X \sim f(x,\theta) = \theta e^{-\theta}$, for x > 0 choose h(x) = x, then $\mathbf{E}\bar{H} = \mathbf{E}(X) = k(\theta) = \theta^{-1}$, $k'(\theta) = \theta^{-2}$,

$$\sigma_h^2(\theta) = Var(X) = \theta^{-2}$$

$$\hat{\theta} = \frac{1}{\bar{X}} \approx \mathcal{N}\left(\theta, \frac{\theta^2}{n}\right)$$

M.I.e. asymptotics

Definition The function

$$I(\theta) = E_{\theta} \left\{ \frac{\partial^{2} l(\theta, x)}{\partial \theta^{2}} \right\}$$
$$= \int \frac{\partial^{2} \log f(x, \theta)}{\partial \theta^{2}} f(x, \theta) dx$$

is called Fisher's information per observation

$$I_n(\theta) = E_{\theta} \left\{ \frac{\partial^2 l(\theta, \mathbf{x})}{\partial \theta^2} \right\}$$
$$= \int \frac{\partial^2 \log f(\mathbf{x}, \theta)}{\partial \theta^2} f(\mathbf{x}, \theta) d\mathbf{x}$$

is called $\it Fisher's information$ for a sample of size $\it n$

Regularity condition R:

- (A) The range of values x does not depend on θ
- (B) the first 3 partial derivatives w.r.t. θ of f are integrable w.r.t. x

Theorem 2 Under (R), Fisher's information for a sample of size n

$$I_n(\theta) = -\int \frac{\partial^2 \log f(\mathbf{x}, \theta)}{\partial^2 \theta} f(\mathbf{x}, \theta) d\mathbf{x}$$
$$= \int \left(\frac{\partial \log f(\mathbf{x}, \theta)}{\partial \theta}\right)^2 f(\mathbf{x}, \theta) d\mathbf{x}$$

Proof. We have

$$\int f(\mathbf{x}, \theta) d\mathbf{x} = 1$$

for all θ , so differentiate

$$0 = \int \frac{\partial f(\mathbf{x}, \theta)}{\partial \theta} d\mathbf{x}$$
$$= \int \left(\frac{\partial \log f(\mathbf{x}, \theta)}{\partial \theta}\right) f(\mathbf{x}, \theta) d\mathbf{x}$$

as $\frac{\partial \log f}{\partial \theta} = \frac{f'}{f}$; differentiate again:

$$0 = \int \frac{\partial^2 \log f(\mathbf{x}, \theta)}{\partial^2 \theta} f(\mathbf{x}, \theta) d\mathbf{x}$$
$$+ \int \left(\frac{\partial \log f(\mathbf{x}, \theta)}{\partial \theta} \right) \frac{\partial f(\mathbf{x}, \theta)}{\partial \theta} d\mathbf{x}$$
$$= \int \frac{\partial^2 \log f(\mathbf{x}, \theta)}{\partial^2 \theta} f(\mathbf{x}, \theta) d\mathbf{x}$$
$$+ \int \left(\frac{\partial \log f(\mathbf{x}, \theta)}{\partial \theta} \right)^2 f(\mathbf{x}, \theta) d\mathbf{x}$$

where we applied $\frac{\partial \log f}{\partial \theta} = \frac{f'}{f}$ again; this finishes the proof.

Theorem 3 Under (R), random sample, as $n \to \infty$,

$$\widehat{\theta} \approx \mathcal{N}\left(\theta, \frac{1}{I_n(\theta)}\right) = \mathcal{N}\left(\theta, \frac{1}{nI(\theta)}\right)$$

Sketch of Proof. Under random sample,

$$l(\theta, \mathbf{X}) = \sum_{i=1}^{n} \log f(X_i, \theta)$$

Assume

$$\frac{\partial l}{\partial \theta}|_{\theta = \widehat{\theta}} = 0$$

Taylor:

$$\frac{\partial l}{\partial \theta} = \frac{\partial l}{\partial \theta}|_{\theta = \hat{\theta}} + (\theta - \hat{\theta}) \frac{\partial^2 l}{\partial \theta^2}|_{\theta = \theta^*},$$

where θ^* is between θ and $\hat{\theta}$; so

$$\frac{1}{\sqrt{n}}\frac{\partial l}{\partial \theta} = \sqrt{n}(\theta - \hat{\theta})\frac{\partial^2 l}{n\partial \theta^2}|_{\theta = \theta^*},\tag{1}$$

Note

$$\frac{1}{\sqrt{n}}\frac{\partial l}{\partial \theta} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\partial \log f(X_i, \theta)}{\partial \theta}$$

and

$$\mathbf{E}\frac{\partial \log f(X_i, \theta)}{\partial \theta} = \int \frac{\partial \log f(x, \theta)}{\partial \theta} f(x, \theta) dx = 0$$

and

$$\mathbf{E}\left\{\left(\frac{\partial \log f(X_i,\theta)}{\partial \theta}\right)^2\right\} = I(\theta)$$

so by C.L.T.

$$\frac{1}{\sqrt{n}}\frac{\partial l}{\partial \theta} \approx \mathcal{N}(0, I(\theta))$$

Also

$$\mathbf{E}\frac{\partial^2 \log f(X,\theta)}{\partial \theta^2} = -I(\theta),$$

so by the law of large numbers

$$\frac{\partial^2 l(\theta; \mathbf{X})}{n\partial\theta^2} \to -I(\theta) \tag{2}$$

in probability.

Assume $\theta^* \to \theta$ in probability, then (2) also true for θ^*

Collect; (1) gives

$$\sqrt{n}(\theta - \widehat{\theta}) = \frac{1}{\sqrt{n}} \frac{\partial l}{\partial \theta} \left\{ \frac{\partial^2 l}{n \partial \theta^2} |_{\theta = \theta^*}, \right\}^{-1}$$

$$\approx -\frac{1}{I(\theta)} \mathcal{N}(0, I(\theta)) \text{ in distribution}$$

$$= N\left(0, \frac{1}{I(\theta)}\right) \text{ in distribution}$$

so, in distribution,

$$\widehat{\theta} \approx N\left(\theta, \frac{1}{nI(\theta)}\right).$$

This finishes the proof.

Example. X_1, X_2, \ldots i.i.d. Bernoulli (θ) , $\hat{\theta} = \bar{X}$

$$L(\theta, \mathbf{x}) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$$

and

$$l(\theta, \mathbf{x}) = \sum x_i(\log(\theta) - \log(1 - \theta)) + n\log(1 - \theta)$$

SO

$$\frac{\partial l}{\partial \theta} = \frac{1}{\theta} \sum x_i + \frac{1}{1 - \theta} \sum x_i - \frac{n}{1 - \theta}$$
$$= \frac{n}{1 - \theta} \left(\frac{\bar{x}}{\theta} - 1 \right)$$

and

$$\left(\frac{\partial l}{\partial \theta}\right)^2 = \frac{n^2}{(1-\theta)^2} \left(\frac{(\bar{x})^2}{\theta^2} - 2\frac{\bar{x}}{\theta} + 1\right)$$

and $\mathbf{E}\bar{X}=\theta$,

$$\mathbf{E}(\bar{X}^2) = Var(\bar{X}) + \theta^2 = \frac{\theta(1-\theta)}{n} + \theta^2,$$

SO

$$I_{n}(\theta) = \mathbf{E} \left\{ \left(\frac{\partial l(\theta, \mathbf{X})}{\partial \theta} \right)^{2} \right\}$$

$$= \frac{n^{2}}{(1 - \theta)^{2}} \left(\frac{\theta(1 - \theta)}{n\theta^{2}} + \frac{\theta^{2}}{\theta^{2}} - 2\frac{\theta}{\theta} + 1 \right)$$

$$= \frac{n}{\theta(1 - \theta)}.$$

Note: $I_n(\theta) = (Var(\bar{X}))^{-1}$

Also

$$\frac{\partial^2 l}{\partial \theta^2} = \frac{n}{(1-\theta)^2} \left(\frac{\bar{x}}{\theta} - 1\right) - \frac{n}{\theta^2 (1-\theta)} \bar{x}$$

SO

$$E\left(-\frac{\partial^2 l}{\partial \theta^2}(\mathbf{X})\right) = -\frac{n}{(1-\theta)^2} \left(\frac{\theta}{\theta} - 1\right) + \frac{n\theta}{\theta^2 (1-\theta)}$$
$$= \frac{n}{\theta (1-\theta)}$$

gives the same answer, as it should.

Confidence intervals from point estimators

If $\hat{\theta} \approx \mathbf{N}(0, \sigma^2(\theta))$ then

$$rac{\sqrt{n}(\widehat{ heta}- heta)}{\sigma(heta)} o \mathcal{N}(0,1)$$
 in distribution

thus have approximate pivot

As θ unknown: replace $\frac{\sigma(\theta)}{\sqrt{n}}$ by $\frac{\sigma(\hat{\theta})}{\sqrt{n}}$, the so-called *standard error*

Then

$$\begin{aligned} 1 - \alpha &\approx & \mathbf{P}(\widehat{\theta} - z_{\alpha/2} \frac{\sigma(\widehat{\theta})}{\sqrt{n}} < \theta \\ &< \widehat{\theta} + z_{\alpha/2} \frac{\sigma(\widehat{\theta})}{\sqrt{n}}) \end{aligned}$$

gives an approximate 100 $(1-\alpha)\%$ confidence interval

Example. Random sample, $f(x,\theta) = \theta e^{-\theta x}$, for x > 0

Then $\hat{\theta} = \frac{1}{\bar{X}}$ and $I(\theta) = \frac{1}{\theta^2}$, so

$$\widehat{\theta} \approx \mathcal{N}\left(\theta, \frac{\theta^2}{n}\right)$$

and also

$$\widehat{\theta} \approx \mathcal{N}\left(\theta, \frac{\widehat{\theta}^2}{n}\right)$$

gives approximate 95% confidence interval

$$\frac{1}{\overline{x}} \pm 1.96 \frac{1}{\sqrt{n}\overline{x}} = \frac{1}{\overline{x}} \left(1 \pm \frac{1.96}{\sqrt{n}} \right)$$

Warning: left limit can be less than 0

Rule of Thumb: approximation good if $n \ge 30$; if underlying distribution is symmetric: already reasonably good for $n \ge 20$

Small sample properties

 $T = t(\mathbf{X})$ estimator; \mathbf{X} density $f(\mathbf{x}, \theta)$

Bias
$$b(\theta) = \mathbf{E}_{\theta}(T) - \theta$$

Mean-square error (M.S.E.)

$$\mathbf{E}_{\theta}\{(T-\theta)^{2}\} = Var_{\theta}(T) + b(\theta)^{2}$$

Would like: small bias and small m.s.e.

Example: X_1, X_2, \ldots i.i.d. $U([0, \theta])$;

$$\hat{\theta} = X_{(n)}, \quad \tilde{\theta} = \frac{n+1}{n} X_{(n)}$$

 $\mathbf{E}\widehat{\theta} = \frac{n}{n+1}\theta$ not unbiased, $\mathbf{E}\widetilde{\theta} = \theta$, but

$$Var(\widehat{\theta}) = \frac{n}{(n+1)^2(n+2)}\theta^2$$

versus

$$Var(\tilde{\theta}) = \frac{1}{n(n+2)}\theta^2 > Var(\hat{\theta})$$

Theorem 4 Cramer-Rao lower bound (Information inequality

Assumptions: X_1, \ldots, X_n sample, density $f(\mathbf{x}, \theta)$, T unbiased, and (R)

Then

$$Var(T(\mathbf{X})) \ge \frac{1}{I_n(\theta)}.$$

Note: Under regularity (R), MLE is asymptotically unbiased, achieves Cramer-Rao lower bound asymptotically

Proof. T unbiased, so

$$\theta = \int t(\mathbf{x}) f(\mathbf{x}, \theta) d\mathbf{x}$$

Differentiate both sides w.r.t. θ :

$$1 = \int t(\mathbf{x}) \frac{\partial}{\partial \theta} f(\mathbf{x}, \theta) d\mathbf{x}$$
$$= \int t(\mathbf{x}) f(\mathbf{x}, \theta) \frac{\partial}{\partial \theta} \log f(\mathbf{x}, \theta) d\mathbf{x}$$
$$= \mathbf{E} \left(T(\mathbf{X}) \frac{\partial}{\partial \theta} \log f(\mathbf{X}, \theta) \right)$$

Cauchy-Schwarz inequality: (stated in statistical terms) For any two random variables,

$$(Cov(U, V))^2 \le Var(U)Var(V)$$

Put

$$U = T(\mathbf{X}), \quad V = \frac{\partial}{\partial \theta} \log f(\mathbf{X}, \theta)$$

then

$$\mathbf{E}V = \int \left(\frac{\partial}{\partial \theta} \log f(\mathbf{x}, \theta)\right) f(\mathbf{x}, \theta) d\mathbf{x}$$

$$= \int \frac{\partial}{\partial \theta} f(\mathbf{x}, \theta) d\mathbf{x}$$

$$= \frac{\partial}{\partial \theta} \int f(\mathbf{x}, \theta) d\mathbf{x}$$

$$= \frac{\partial}{\partial \theta} 1 = 0,$$

SO

$$Cov(U, V) = \mathbf{E}(UV) - \mathbf{E}(U)\mathbf{E}(V) = \mathbf{E}(UV) = 1$$

and

$$Var(V) = \mathbf{E}\left(\frac{\partial}{\partial \theta}\log f(\mathbf{X}, \theta)\right)^2 = I_n(\theta),$$

SO

$$VarT(\mathbf{X}) \ge \frac{Cov(U, V)^2}{Var(V)} = \frac{1}{I_n(\theta)}$$

This finishes the proof.

Extension: T(X) biased, bias $b(\theta)$, then

$$VarT(\mathbf{X}) \ge \frac{\left(1 + \frac{db}{d\theta}\right)^2}{I_n(\theta)}$$

Proof: As before, only,

$$E(T(\mathbf{X})) = \theta + b(\theta) = \int t(\mathbf{x}) f(\mathbf{x}, \theta) d\mathbf{x}$$

Differentiate both sides with respect to θ ; gives

$$1 + \frac{db}{d\theta}$$

instead of 1; and then

$$Cov(U, V) = 1 + \frac{db}{d\theta}.$$