2. Normal sampling theory

From the central limit theorem: normal distribution plays central role

Recall: $X \sim \mathcal{N}(\mu, \sigma^2)$ if p.d.f.

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

for $-\infty < x < \infty$; alternatively, m.g.f.

$$M_X(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$$

$$X$$
 has $E(X) = \mu, Var(W) = \sigma^2$

 $X \sim \mathcal{N}(\mu, \sigma^2)$ then

$$X = \mu + \sigma Z$$

where $Z \sim \mathcal{N}(0,1)$

Theorem 1 Suppose X_1, \ldots, X_n independent,

$$X_j \sim \mathcal{N}(\mu_j, \sigma_j^2)$$
 for $j = 1, \dots, n$

Put
$$Y = \sum_{j=1}^{n} \alpha_j X_j$$
 Then

$$Y \sim \mathcal{N}(\sum_{j=1}^{n} \alpha_j \mu_j, \sum_{j=1}^{n} \alpha_j^2 \sigma_j^2)$$

Proof.

$$M_{Y}(t) = E\left(e^{tY}\right)$$

$$= E\prod_{j=1}^{n} e^{t\alpha_{j}X_{j}}$$

$$= \prod_{j=1}^{n} M_{X_{j}}(t\alpha_{j}) \quad (indep.)$$

$$= \prod_{j=1}^{n} \exp\left(\alpha_{j}\mu_{j}t + \frac{\sigma_{j}^{2}\alpha_{j}^{2}t^{2}}{2}\right)$$

$$= \exp\left(t\sum_{j=1}^{n} \alpha_{j}\mu_{j} + t^{2}\sum_{j=1}^{n} \frac{\sigma_{j}^{2}\alpha_{j}^{2}}{2}\right).$$

Example:

$$X_1, \ldots, X_n$$
 i.i.d. $\mathcal{N}(\mu, \sigma^2)$ for $j = 1, \ldots, n$ $\alpha_j = 1/n$ for $j = 1, \ldots, n$

$$Y = \bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j \sim \mathcal{N}(\mu, \sigma^2/n)$$

The χ^2 distribution

Suppose Z_1,\ldots,Z_r are i.i.d. $\mathcal{N}(0,1)$, and put

$$Y = Z_1^2 + Z_2^2 + \dots + Z_r^2$$

The Y is said to have a χ^2_r -distribution, or a χ^2 distribution with r degrees of freedom is the same as $\operatorname{Gamma}(\alpha,\lambda)$ distribution with $\alpha=r/2$ and $\lambda=1/2$

Theorem 2 The p.d.f. of Y is

$$f_Y(y) = \frac{1}{\Gamma(\frac{r}{2}) 2^{r/2}} y^{\frac{r}{2} - 1} e^{-y/2}$$

for $0 \le y < \infty$

the m.g.f. is $M_Y(t) = (1-2t)^{-r/2}$ for $-\infty < t < 1/2$.

In particular

$$E(Y) = r$$

and

$$Var(Y) = 2r$$

Proof: Exercise.

Independence of \bar{X} and S^2

$$X_1,\ldots,X_n$$
 i.i.d. $\mathcal{N}(\mu,\sigma^2)$

Often estimate μ by \bar{X} , and σ^2 by

$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (X_{j} - \bar{X})^{2}$$

Theorem 3 If X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$ then \bar{X} and S^2 are independent,

$$\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

Proof.

Write $X_j = \mu + \sigma Z_j$, where $Z \sim \mathcal{N}(0, 1)$

$$\bar{X} = \mu + \sigma \bar{Z}$$

$$\frac{S^2}{\sigma^2} = \frac{1}{n-1} \sum_{j=1}^{n} (Z_j - \bar{Z})^2$$

p.d.f. of $\mathbf{Z} = (Z_1, Z_2, \dots, Z_n)$ is

$$f_{\mathbf{Z}}(\mathbf{z}) = (2\pi)^{-n/2} \exp\left(-\mathbf{z}^T \mathbf{z}/2\right)$$

for $\mathbf{z} \in \mathbf{R}^n$

Change of variable: $\mathbf{Y}=Q\mathbf{Z}$ where Q is orthogonal, $Q^TQ=I, detQ=\pm 1$ first row of Q is identical to $n^{-1/2}$

Then

$$\mathbf{y}^T \mathbf{y} = \mathbf{z}^T Q^T Q \mathbf{z} = \mathbf{z}^T \mathbf{z}$$

Jacobian is 1 in absolute value, so

$$f_{\mathbf{Y}}(\mathbf{y}) = (2\pi)^{-n/2} \exp(-\mathbf{y}^T \mathbf{y}/2)$$

so $Y_1, \ldots, Y_n \sim \mathcal{N}(0,1)$, i.i.d. and

$$Y_1 = \sqrt{n}\bar{Z}$$

SO

$$\sum_{j=1}^{n} (Z_j - \bar{Z})^2 = \sum_{j=1}^{n} Z_j^2 - n(\bar{Z})^2$$

$$= \sum_{j=1}^{n} Y_j^2 - Y_1^2$$

$$= \sum_{j=2}^{n} Y_j^2$$

As Y_1 and Y_2, \ldots, Y_n are independent:

 \bar{Z} and $\sum_{j=1}^{n}(Z_{j}-\bar{Z})^{2}$ are independent,

$$ar{Z} \sim \mathcal{N}(0, 1/n)$$

$$\sum_{j=1}^{n} (Z_j - \bar{Z})^2 \sim \chi_{n-1}^2$$

transform back to X_1, \ldots, X_n : gives the assertion.

Note: $E\bar{X}=\mu$ and $E(n-1)S^2/\sigma^2=(n-1)$, so $ES^2=\sigma^2$; S^2 is unbiased

Remark: Transformation $X_j=\mu+\sigma Z_j$ gives that the distribution of $\frac{S^2}{\sigma^2}$ does not depend on μ or σ^2

Similarly can show:

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}, \quad \frac{\sqrt{n}(\bar{X}-\mu)}{S}$$

are functions of Z_1, Z_2, \ldots, Z_n alone, so their distribution cannot depend on μ or σ^2

Student's t-distribution

Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi_r^2$, independent The distribution of

$$T = \frac{X}{\sqrt{Y/r}}$$

is called (Student's) t-distribution with r degrees of freedom; $T \sim t_r$.

Theorem 4 The p.d.f. of t_r is

$$f_T(t) = \frac{\Gamma((r+1)/2)}{\Gamma(r/2)} (r\pi)^{-1/2} (1+t^2/r)^{-(r+1)/2},$$

for $-\infty < t < \infty$.

Proof Transformation formula. The joint p.d.f. of X and Y is

$$f_{X,Y}(x,y) = C_r e^{-x^2/2} y^{\frac{r}{2}-1} e^{-y/2},$$

for $-\infty < x < \infty, y \ge 0$; with

$$C_r = (\sqrt{2\pi}\Gamma(r/2)2^{r/2})^{-1}$$

and $t = x \left(\frac{y}{r}\right)^{-1/2}$ so

$$f_{T,Y}(t,y) = f_{X,Y}(t(y/r)^{1/2},y)(y/r)^{1/2}$$

giving

$$f_T(t) = r^{-1/2} C_r \int_0^\infty \exp\left\{-y\left(1 + t^2/r\right)/2\right\}$$

$$y^{\frac{r+1}{2}-1} dy$$

Substitute $u = y \left(1 + t^2/r\right)/2$ to obtain

$$f_T(t) = r^{-1/2} C_r \left(\frac{2}{1+t^2/r}\right)^{\frac{r+1}{2}}$$

$$\int_0^\infty e^{-u} u^{\frac{r+1}{2}-1} du$$

$$= r^{-1/2} C_r \left(\frac{2}{1+t^2/r}\right)^{\frac{r+1}{2}} \Gamma((r+1)/2).$$

Special cases

r=1: $f_T(t)=(\pi(1+t^2))^{-1}$: Cauchy distribution

$$r \to \infty$$
: $f_T(t) \to \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$

approximately standard normal

Theorem 5 If X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$ then

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

Proof:

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \times \frac{\sigma}{S}$$
$$= \frac{V}{\sqrt{Y/(n-1)}}$$

with $V=\sim \mathcal{N}(0,1)$, $Y=\frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}$, independent from Theorem 3

Fisher's F-distribution

Let $V \sim \chi_q^2$, $Y \sim \chi_r^2$, independent: The distribution of

$$W = \frac{V/q}{Y/r}$$

is called (Fisher's) F-distribution with (q, r) degrees of freedom,

$$W \sim F_{q,r}$$

Fact: The $F_{q,r}$ -distribution has as density

$$f_W(w) = \frac{\Gamma((q+r)/2)}{\Gamma(q/2)\Gamma(r/2)} \left(\frac{q}{r}\right)^{q/2}$$
$$\frac{w^{\frac{q}{r}-1}}{\left(1+\frac{q}{r}w\right)^{(q+r)/2}}$$

for $w \ge 0$

From the definition follows

Theorem 6 Suppose, independently, X_1, \ldots, X_n are i.i.d. $\mathcal{N}(\mu_1, \sigma_1^2)$, Y_1, \ldots, Y_m are i.i.d. $\mathcal{N}(\mu_2, \sigma_2^2)$, and let

$$S_1^2 = S_{XX}^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \bar{X})^2$$

$$S_2^2 = S_{YY}^2 = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \bar{Y})^2$$

and

$$W = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$$

Then $W \sim F_{n-1,m-1}$

Some properties:

If
$$X \sim F_{q,r}$$
 then $\frac{1}{X} \sim F_{r,q}$

If $X \sim t_r$ then $X^2 \sim F_{1,r}$

To calculate EW for $r \geq 3$:

If $Y \sim \chi_r^2$ then

$$E\left(\frac{1}{Y}\right) = E \int_{-\infty}^{0} e^{tY} dt$$
$$= \int_{-\infty}^{0} (1 - 2t)^{-r/2} dt$$
$$= \frac{1}{r - 2}$$

If $V \sim \chi_q^2$ then EV = q

By independence follows

$$EW = E\left(\frac{V/q}{Y/r}\right) = \frac{r}{r-2}$$

tends to 1 for $r \to \infty$

For r=2, use that $\chi_2^2=exp(1/2)$, the exponential distribution with mean 2.

Extending Theorem 3

Theorem 7 Suppose that, independently, $X_j \sim \mathbf{N}(\alpha u_j, \sigma^2)$ for j = 1, ..., n, where $\mathbf{u} = (u_1, ..., u_n)^T$ is a vector of unit length and $\alpha \in \mathbf{R}$, then

$$\mathbf{u}^T \mathbf{X} = \sum_{j=1}^n u_j X_j$$

and

$$W^2 = \sum_{j=1}^n (X_j - u_j \mathbf{u}^T \mathbf{X})^2$$

are independent,

$$\mathbf{u}^T \mathbf{X} \sim \mathcal{N}(\alpha, \sigma^2)$$
$$\frac{W^2}{\sigma^2} \sim \chi_{n-1}^2$$

Proof.

Write $X_j = \alpha u_j + \sigma Z_j$, where $Z_j \sim \mathcal{N}(0,1)$, then

$$\mathbf{u}^T \mathbf{X} = \alpha + \sigma \mathbf{u}^T \mathbf{Z}$$

as $\sum u_j^2 = 1$, and

$$W^{2} = \sum_{j=1}^{n} (\alpha u_{j} + \sigma Z_{j} - u_{j}\alpha - u_{j}\sigma \mathbf{u}^{T}\mathbf{Z})^{2}$$
$$= \sum_{j=1}^{n} \sigma^{2}(Z_{j} - u_{j}\mathbf{u}^{T}\mathbf{Z})^{2}$$

and so

$$\frac{W^2}{\sigma^2} = \sum_{j=1}^n (Z_j - u_j \mathbf{u}^T \mathbf{Z})^2$$

Let $\mathbf{Y} = Q\mathbf{Z}$, Q orthogonal, \mathbf{u}^T as first row, then as before $Y_j, j = 1, \ldots, n$ are i.i.d. $\mathcal{N}(0, 1)$,

$$Y_1 = \mathbf{u}^T \mathbf{Z}$$

and

$$\sum_{j=1}^{n} (Z_j - u_j \mathbf{u}^T \mathbf{Z})^2$$

$$= \sum_{j=1}^{n} Z_j^2 - (\mathbf{u}^T \mathbf{Z})^2$$

$$= \sum_{j=1}^{n} Y_j^2 - Y_1^2$$

$$= \sum_{j=2}^{n} Y_j^2$$

$$\sim \chi_{n-1}^2,$$

independent of Y_1 .

Similarly show

Theorem 8 Suppose that, independently, $X_j \sim \mathbf{N}(\alpha u_j + \beta v_j, \sigma^2)$ for $j = 1, \ldots, n$, where \mathbf{u}, \mathbf{v} are orthogonal vectors of unit length: $\mathbf{u}^T \mathbf{v} = 0$, and $\alpha, \beta \in \mathbf{R}$. Then

$$\mathbf{u}^T \mathbf{X}, \mathbf{v}^T \mathbf{X},$$

and

$$W^2 = \sum_{j=1}^n (X_j - u_j \mathbf{u}^T \mathbf{X} - v_j \mathbf{v}^T \mathbf{X})^2$$

are independent,

$$\mathbf{u}^T \mathbf{X} \sim \mathcal{N}(\alpha, \sigma^2)$$

$$\mathbf{v}^T \mathbf{X} \sim \mathcal{N}(\beta, \sigma^2)$$

$$\frac{W^2}{\sigma^2} \sim \chi_{n-2}^2$$

Proof.

Write $X_j = \alpha u_j + \beta v_j + \sigma Z_j$, where $Z_j \sim \mathcal{N}(0, 1)$, then

$$\mathbf{u}^T \mathbf{X} = \alpha + \sigma \mathbf{u}^T \mathbf{Z}$$

and

$$\mathbf{v}^T \mathbf{X} = \beta + \sigma \mathbf{v}^T \mathbf{Z}$$

and similarly to before

$$\frac{W^2}{\sigma^2} = \sum_{j=1}^n (Z_j - u_j \mathbf{u}^T \mathbf{Z} - v_j \mathbf{v}^T \mathbf{Z})^2$$

Let $\mathbf{Y}=Q\mathbf{Z}$, Q orthogonal, \mathbf{u}^T as first row, \mathbf{v}^T as second row, then as before $Y_j, j=1,\ldots,n$ are i.i.d. $\mathcal{N}(0,1)$,

$$Y_1 = \mathbf{u}^T \mathbf{Z}$$

$$Y_2 = \mathbf{v}^T \mathbf{Z}$$

and

$$\sum_{j=1}^{n} (Z_{j} - u_{j} \mathbf{u}^{T} \mathbf{Z} - v_{j} \mathbf{v}^{T} \mathbf{Z}))^{2}$$

$$= \sum_{j=1}^{n} Z_{j}^{2} - (\mathbf{u}^{T} \mathbf{Z})^{2} - (\mathbf{v}^{T} \mathbf{Z})^{2}$$

$$= \sum_{j=1}^{n} Y_{j}^{2} - Y_{1}^{2} - Y_{2}^{2}$$

$$= \sum_{j=3}^{n} Y_{j}^{2}$$

$$\sim \chi_{n-2}^{2},$$

independent of Y_1, Y_2 . Argueing as before finishes the proof.

Appendix: Transformation formula

Let X_1, \ldots, X_n have joint probability density $f(x_1, \ldots, x_n)$, put

$$U_i = g_i(X_1, \dots, X_n)$$
 $i = 1, \dots, n$

and assume that this gives a 1-1 transformation with inverse

$$X_i = h_i(U_1, \dots, U_n)$$
 $i = 1, \dots, n.$

The Jacobian is

$$J = det \left[\left(\frac{\partial h_i}{\partial u_j} \right)_{i,j=1,\dots,n} \right]$$

Then the joint density of U_1, \ldots, U_n is

$$f(h_1(U_1,\ldots,U_n),\ldots,h_n(U_1,\ldots,U_n))|J|.$$