Outline

1. Exploratory data analysis

Visualization of data and data summaries: Histograms, median, quartiles, interquartile range, boxplot, mean, standard deviation, empirical distribution function, order statistics.

2. Normal sampling theory

The theory that much of statistical inference relies on (recall the central limit theorem). Chi-square distribution, t-distribution, F-distribution; joint distribution of sample mean and variance for a normal sample.

3. Estimation

How to estimate parameters of interest from the data, and the importance of a confidence interval for these estimates. Method of moments, maximum likelihood estimation, information inequality, asymptotic distribution of mle; approximate confidence intervals.

4. Hypothesis tests

How to formulate and test hypotheses from data. Null and alternative hypothesis, simple and composite hypothesis, type I and type II errors, test statistics; Neyman-Pearson lemma; likelihood ratio tests and generalized likelihood ratio tests. Examples. Relationship between tests and confidence intervals.

5. Goodness of fit

How to assess whether the chosen model fits. Examining model assumptions, probability plotting, chi-squared goodness of fit test; transformations, robustness and outliers.

6. Regression and one-way analysis of variance

How to analyse treatment-response data. Scatterplots, correlation, least squares and maximum likelihood estimation. Generalisation to multiple regression. Distribution of extimators, hypothesis tests, confidence intervals, prediction intervals. Analysis of residuals. One-way analysis of variance.

See also the synopsis at http://www.maths.ox.ac.uk/teaching/synopses.

Organisation

In HT 2004, lectures will take place Wednesdays 9-10 and Fridays 10-11. Problem sheets and PDF files for lectures will be posted at http://www.stats.ox.ac.uk/reinert.

If you have questions or comments, feel free to contact me at reinert@stats.ox.ac.uk, phone (2)82851, office 2.307, 2 South Parks Road.

Recommended reading

- 1. G. CASELLA AND R.L. BERGER (2001). Statistical Inference. 2nd edition, Wadsworth. Chapters 7-9, 11.2, 12.2.
- 2. P. CLIFFORD (2000). Introduction to Mathematical Statistics. Lecture notes at http://www.jesus.ox.ac.uk/clifford/a5.html
- 3. F. DALY, D.J. HAND, M.C. JONES, A.D. LUNN, AND K.J. MC-CONWAY (1995). *Elements of Statistics*. Addison Wesley. Chapters 7-10, and 1-6 for background.
- 4. P.H. GARTHWAITE, I.T. JOLLIFFE, AND B. JONES (2002). Statistical Inference. 2nd edition, OUP. Sections 2.2-2.4, 3.2, 4.1, 4.2, 4.6, 5.1, 5.2
- 5. J.A. RICE (1995). Mathematical Statistics and Data Analysis. 2nd edition, Wadsworth. Sections 6, 8.4-8.6, 10.3-10.6, 11.2, 11.3, 12.2.1, 13.3, 13.4, 14.1-14.5.