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Convergence diagnostics for MCMC.

Parallel MCMC.

Adaptive multiple importance sampling.
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Convergence diagnostics

Goal: assess whether MCMC chains have converged.

In general, impossible to know for sure that there is no
problem.

But we can sometimes know for sure that there is a
problem.
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Visual diagnostics: traceplot

Target: π = N (−2, 0.22), proposal q(y | x) = N (y;x, 0.52).
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Visual diagnostics: autocorrelogram

Target: π = N (−2, 0.22), proposal q(y | x) = N (y;x, 0.52).
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Visual diagnostics: convergence of estimators

Target: π = N (−2, 0.22), proposal q(y | x) = N (y;x, 0.52).
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Could be also computed on different non-overlapping
subsequences, leading to Geweke’s diagnostics.
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Visual diagnostics: traceplot

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), same proposal.
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Visual diagnostics: autocorrelogram

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), same proposal.
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Visual diagnostics: convergence of estimators

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), same proposal.
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Multiple starting point

We start M chains from various starting points.

After enough iterations the starting point should not
matter and hence we should obtain the same results based
on each chain.

We have the classical “sum of squares” decomposition in
“intra group” and “inter group” terms:

M∑
m=1

T∑
t=1

(Xm,t − X̄·,·)2 =
M∑
m=1

T∑
t=1

(X̄m,· − X̄·,·)2

+
M∑
m=1

T∑
t=1

(Xm,t − X̄m,·)2

Patrick Rebeschini Lecture 9 10/ 38



Multiple starting point

This leads to considering

W = 1
M

M∑
m=1

1
T − 1

T∑
t=1

(Xm,t − X̄m,·)2

B = 1
M − 1

M∑
m=1

(X̄m,· − X̄·,·)2

V =
(

1− 1
T

)
W +B

In principle W and V should both converge to the true
variance of the target distribution.
V would be unbiased if starting points were drawn from
the target, whereas W under-estimates the variance.
We can thus plot

√
V/W and compare to 1. This is the

idea behind Gelman-Rubin diagnostics.
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Visual diagnostics: Gelman-Rubin diagnostics

Target: π = N (−2, 0.22), M = 4 chains.
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Visual diagnostics: Gelman-Rubin diagnostics

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), M = 4 chains.
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Visual diagnostics: traceplot with M chains

Target: π = 1
2N (−2, 0.22) + 1

2N (+2, 0.22), M = 4 chains.
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Parallelization

In the past (and in the next?) years, many more parallel cores,
but not much more clockspeed.

Among the methods seen so far, which are parallelizable?

MCMC methods are by definition iterative methods.
Sometimes the likelihood evaluation itself can be
parallelized.

We can run independent MCMC in parallel, as in the
Gelman-Rubin diagnostics.

Should we make the chains interact?
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Parallelization of the likelihood evaluation

Consider the evaluation of the likelihood in the normal mixture
case: the observations Y1, . . . , Yn come from

∀i ∈ {1, . . . , n} Yi ∼
K∑
k=1

pkN (µk, σ2
k).

The likelihood can be written

L(θ; y1, . . . , yn) =
n∏
i=1

(
K∑
k=1

pkϕ(yi;µk, σ2
k)
)

which can be done by evaluating the n terms in the product in
parallel and then taking the product.
Or n×K terms in parallel, and then partial sums and a
product.
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Parallelization of the likelihood evaluation

For i.i.d. data the likelihood evaluation can be parallelized.

In cases where

the likelihood is not so expensive,

or the likelihood evaluation cannot be efficiently
parallelized.

then a single-chain Metropolis-Hastings algorithm cannot
benefit from multiple processors.

However we can run multiple chains!
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Parallel MCMC on subtargets

Suppose the target π is the posterior distribution of the
parameter in a model where the observations are assumed i.i.d.

π(θ) = p(θ | y1, . . . , yn) ∝
n∏
i=1

f(yi; θ)p(θ).

We can decompose the posterior distribution as follows

π(θ) =
G∏
g=1

 ng∏
ig=1

f(yσg(ig); θ)pγg (θ)

 .
Here

∑G
g=1 γg = 1 and σg is such that each i ∈ {1, . . . , n}

corresponds to a single σg(ig) with ig ∈ {1, . . . , ng}.
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Parallel MCMC on subtargets

Example: n = 1, 000, 000 data points, G = 1000 groups.

π(θ) =
1000∏
g=1

(1000∏
i=1

f(y(g−1)×1000+i; θ)p1/1000(θ)
)
.

We can run a MCMC for each group g, targeting

πg(θ) =
1000∏
i=1

f(y(g−1)×1000+i; θ)p1/1000(θ).

Then we need to combine the G different estimates to recover
the posterior of interest, π(θ).
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Parallel MCMC on subtargets

One naive way to do is to use kernel density estimates of each
subtarget πg:

π̂g(θ) = 1
T

T∑
t=1

1
hd
K

( |θt − θ|
h

)
,

for some kernel K and bandwidth h. Then we can approximate
the target density π(θ) by π̂(θ), the product of π̂g(θ) over
g = 1, . . . , G:

π̂(θ) =
G∏
g=1

π̂g(θ)

Unfortunately product of independent estimators. . . the variance
of π̂(θ) grows exponentially fast with the number of groups G.
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Parallel Tempering

The idea of parallel tempering is to run N chains targeting
different versions of π, of “increasing difficulty”.

Introduce “inverse temperatures”:

0 < γ1 < γ2 < . . . < γN = 1.

Introduce “tempered” distributions πγn for n = 1, . . . , N .

For γ ≈ 0, πγ is considered easier to sample because the
variations of π are smaller.
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Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 1

de
ns

ity

Figure: Target density function.
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Parallel Tempering
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Figure: Target density function.
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Parallel Tempering
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Figure: Target density function.
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Parallel Tempering
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Figure: Target density function.
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Parallel Tempering

Let’s use N = 10 chains and γ1 = 0.1, γ2 = 0.2, . . . , γ10 = 1.
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Figure: Trace plot of the “low temperature chains”.
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Parallel Tempering

Let’s use N = 10 chains and γ1 = 0.1, γ2 = 0.2, . . . , γ10 = 1.
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Figure: Trace plot of the “high temperature chains”.
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Parallel Tempering

If we want to find the modes of π, we might just use the
high temperature chains and forget about sampling directly
from π.

If we want to sample from π, can we use the “high
temperature” chains to improve the mixing of the chain
targeting π?

Parallel tempering works by proposing moves where chains
of different temperatures are swapped.
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Parallel Tempering

When a “swap move” is to be performed, do the following.

Sample indices k1, k2 uniformly in {1, . . . , N}.

With acceptance probability

min
(

1, π
γk1 (xk2)πγk2 (xk1)
πγk1 (xk1)πγk2 (xk2)

)
.

exchange the value of xk1 and xk2 .

This doesn’t change the joint target distribution
πγ1 ⊗ πγ2 ⊗ . . .⊗ πγN .

In particular the N -th chain still targets πγN = π.

Patrick Rebeschini Lecture 9 29/ 38



Parallel Tempering
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Figure: Trace plot of the “low temperature chains” using swap moves.
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Parallel Tempering
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Figure: Histogram of the chain targeting πγ1 .
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Parallel Tempering

0.0

0.5

1.0

1.5

2.0

−2 0 2
gamma = 0.4

de
ns

ity

Figure: Histogram of the chain targeting πγ4 .
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Parallel Tempering
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Figure: Histogram of the chain targeting πγ7 .
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Parallel Tempering
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Figure: Histogram of the chain targeting πγ10 .

Swap moves improve the mixing of chains with high values of γ.
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Adaptive Multiple Importance Sampling

Idea: importance sampling is very easy to parallelize.

However it requires a good proposal distribution q,
especially in high dimension.

Suppose we start by drawing X1, . . . , Xn ∼ q1 and
evaluating

∀k ∈ {1, . . . , N} wk ∝
π(Xk)
q1(Xk)

.

It provides an approximation of π in the sense

∫
ϕ(x)π(x)dx ≈ 1∑N

k=1wk

N∑
k=1

wkϕ(Xk).
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Adaptive Multiple Importance Sampling

Given that first try, we can now design a better proposal q2.
For instance, fit a Cauchy mixture on (wk, Xk)Nk=1. We call
the estimated mixture q2 and sample Y1, . . . , YN ∼ q2.
We then evaluate

∀k ∈ {1, . . . , N} ωk ∝
π(Yk)
q2(Yk)

It provides an approximation of π in the sense
∫
ϕ(x)π(x)dx ≈ 1∑N

k=1 ωk

N∑
k=1

ωkϕ(Yk)

We can even use all the generated sample:

(wk, Xk)Nk=1 and (ωk, Yk)Nk=1.
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Adaptive Multiple Importance Sampling

In general AMIS works by iterating at time t:

Importance sampling from qt to π, generating a weighted
sample (w(t)

k , X
(t)
k )Nk=1.

Using the generated sample to design a better proposal
distribution qt+1 for the next step.

At any time we can stop the algorithm and use the generated
sample to approximate integrals with respect to π.
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Sequential Importance Sampling

Arguably the most advanced methods use a mix of
tempering, Markov chain Monte Carlo and Importance
Sampling elements.

For instance Sequential Monte Carlo Samplers sample
iteratively from

π0 = prior, π1 = p(θ | y1), . . . , πN = p(θ | y1, y2, . . . , yN ).

To do so, alternate between importance sampling a whole
population from πn−1 to πn,

and MCMC moves leaving πn invariant at step n.
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