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m Convergence diagnostics for MCMC.
m Parallel MCMC.

m Adaptive multiple importance sampling.
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Convergence diagnostics

m Goal: assess whether MCMC chains have converged.

m In general, impossible to know for sure that there is no
problem.

m But we can sometimes know for sure that there is a
problem.
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Visual diagnostics: traceplot

Target: ™ = N(—2,0.22), proposal q(y | ) = N (y; z,0.5%).
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Visual diagnostics: autocorrelogram

Target: ™ = N(—2,0.22), proposal q(y | ) = N (y; z,0.5%).
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Visual diagnostics: convergence of estimators

Target: m = N(—2,0.22), proposal q(y | ) = N (y; z,0.5%).
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Could be also computed on different non-overlapping
subsequences, leading to Geweke’s diagnostics.
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Visual diagnostics: traceplot

Target: m = FN(—2,0.2%) + 2N(+2,0.2%), same proposal.
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Visual diagnostics: autocorrelogram

Target: m = FN(—2,0.2%) + 2N(+2,0.2%), same proposal.
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Visual diagnostics: convergence of estimators

Target: m = FN(—2,0.2%) + 2N(+2,0.2%), same proposal.
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Multiple starting point

m We start M chains from various starting points.

m After enough iterations the starting point should not
matter and hence we should obtain the same results based
on each chain.

m We have the classical “sum of squares” decomposition in
“intra group” and “inter group” terms:
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Multiple starting point

m This leads to considering
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m In principle W and V should both converge to the true
variance of the target distribution.

m VV would be unbiased if starting points were drawn from
the target, whereas W under-estimates the variance.

m We can thus plot /V/W and compare to 1. This is the
idea behind Gelman-Rubin diagnostics.
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Visual diagnostics: Gelman-Rubin diagnostics

Target: m = N(—2,0.22), M = 4 chains.
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Visual diagnostics: Gelman-Rubin diagnostics

Target: m = FN(—2,0.2%) + IN(+2,0.2%), M = 4 chains.
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Visual diagnostics: traceplot with M chains

Target: m = FN(—2,0.2%) + IN(+2,0.2%), M = 4 chains.
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Parallelization

In the past (and in the next?) years, many more parallel cores,
but not much more clockspeed.

Among the methods seen so far, which are parallelizable?

m MCMC methods are by definition iterative methods.
Sometimes the likelihood evaluation itself can be
parallelized.

m We can run independent MCMC in parallel, as in the
Gelman-Rubin diagnostics.

m Should we make the chains interact?
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Parallelization of the likelihood evaluation

Consider the evaluation of the likelihood in the normal mixture
case: the observations Y7,...,Y, come from

K
Vie{lv"'vn} YzNZpkN(NkaUl%)
k=1

The likelihood can be written

n K
LO;y1,... yn) = H (Z Pre(Yi; Mka@%))

i=1 \k=1

which can be done by evaluating the n terms in the product in
parallel and then taking the product.

Or n x K terms in parallel, and then partial sums and a
product.
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Parallelization of the likelihood evaluation

m For i.i.d. data the likelihood evaluation can be parallelized.
m In cases where

m the likelihood is not so expensive,

m or the likelihood evaluation cannot be efficiently
parallelized.

then a single-chain Metropolis-Hastings algorithm cannot
benefit from multiple processors.

m However we can run multiple chains!
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Parallel MCMC on subtargets

Suppose the target 7 is the posterior distribution of the
parameter in a model where the observations are assumed i.i.d.

n

m(0) =p(O | y1,-..,yn) o< [] £(yi: 0)p(0).

i=1
We can decompose the posterior distribution as follows
G Ng
m(0) =11 | T fWo,0,);0)p7(0) | -
g=1 \ig=1

Here 25:1 vg = 1 and oy is such that each ¢ € {1,...,n}
corresponds to a single o4(iy) with iy € {1,...,ng4}.

Patrick Rebeschini Lecture 9 18/ 38



Parallel MCMC on subtargets

Example: n = 1,000,000 data points, G = 1000 groups.

1000 /1000
m(0) = ]I (H f(y(g—1)x1000+¢;9)p1/1000(9)> :

g=1 \i=1
We can run a MCMC for each group g, targeting

1000
79(0) = T fWig—1)x1000+4 O)p* 1 (0).

=1

Then we need to combine the G different estimates to recover
the posterior of interest, 7(6).
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Parallel MCMC on subtargets

One naive way to do is to use kernel density estimates of each
subtarget m,:

~ 11 (|6,
700 = 13 50k ().

for some kernel K and bandwidth h. Then we can approximate
the target density 7(#) by 7(6), the product of 74(#) over
g=1,....,G:

G
(0) = [T 7,(0)
g=1

Unfortunately product of independent estimators. .. the variance
of 7(0) grows exponentially fast with the number of groups G.
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Parallel Tempering

m The idea of parallel tempering is to run N chains targeting
different versions of 7, of “increasing difficulty™.

m Introduce “inverse temperatures”:

O<mnn<m<...<yy=1.

m Introduce “tempered” distributions 77 forn=1,..., N.

m For v~ 0, 77 is considered easier to sample because the
variations of m are smaller.
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Parallel Tempering
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Figure: Target density function.
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Parallel Tempering
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Figure: Target density function.
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Parallel Tempering
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Figure: Target density function.
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Parallel Tempering

2.0
1.5
2
210
(]
©
0.5
0.0
-2 0 2
gamma =0.1

Figure: Target density function.
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Parallel

Let’s use N = 10 chains and v; = 0.1,y = 0.2, ..
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Figure: Trace plot of the “low temperature chains”.
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Parallel Tempering

Let’s use N = 10 chains and v1 = 0.1,72 =0.2,...,v10 = 1.

xil i R

#chain —1—2—-3

Figure: Trace plot of the “high temperature chains”.

Lecture 9 27/ 38



Parallel Tempering

m [f we want to find the modes of 7, we might just use the
high temperature chains and forget about sampling directly
from 7.

m If we want to sample from 7, can we use the “high
temperature” chains to improve the mixing of the chain
targeting 77

m Parallel tempering works by proposing moves where chains
of different temperatures are swapped.
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Parallel Tempering

When a “swap move” is to be performed, do the following.

m Sample indices ki, k2 uniformly in {1,..., N}.

m With acceptance probability

min <17 Tk (g, )0 7R2 ($k1)> .
7R (g )R (g, )

exchange the value of xj, and xy,.

m This doesn’t change the joint target distribution
TN R ®...QmIN,

m In particular the N-th chain still targets 77~ = 7.
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Parallel Tempering
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Figure: Trace plot of the “low temperature chains” using swap moves.
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Parallel Tempering
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Figure: Histogram of the chain targeting 7.
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Parallel Tempering

-2 0 2
gamma = 0.4

Figure: Histogram of the chain targeting 7.
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Parallel Tempering

2.0
1.5
2
210
(]
©
0.5
0.0
-2 0 2
gamma =0.7

Figure: Histogram of the chain targeting 777.
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Parallel Tempering
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Figure: Histogram of the chain targeting 7.
Swap moves improve the mixing of chains with high values of ~.
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Adaptive Multiple Importance Sampling

m Idea: importance sampling is very easy to parallelize.

m However it requires a good proposal distribution g,
especially in high dimension.

m Suppose we start by drawing X1,..., X, ~ ¢q1 and
evaluating

m(Xk)
a1 (Xy)

m It provides an approximation of 7 in the sense

Vke{l,...,N} wpx

1 N

[ etamtade = 3 w0
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Adaptive Multiple Importance Sampling

Given that first try, we can now design a better proposal ¢s.

For instance, fit a Cauchy mixture on (wy, Xx)¥_;. We call
the estimated mixture g2 and sample Y7,..., Yy ~ g2.

We then evaluate

(V)
q2(Yx)

VEe{l,...,N} wpx

It provides an approximation of 7 in the sense

We can even use all the generated sample:

(wp, Xk)i;\[:l and (wg, Yk)fgvzl.
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Adaptive Multiple Importance Sampling

In general AMIS works by iterating at time ¢:

m Importance sampling from ¢; to m, generating a weighted
sample (w,(:),X,it)),ivzl.

m Using the generated sample to design a better proposal
distribution ¢;y1 for the next step.

At any time we can stop the algorithm and use the generated
sample to approximate integrals with respect to .
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Sequential Importance Sampling

m Arguably the most advanced methods use a mix of
tempering, Markov chain Monte Carlo and Importance
Sampling elements.

m For instance Sequential Monte Carlo Samplers sample
iteratively from

7o = prior,m1 =p(0 | y1),..., 78 =00 | y1,Y2, ..., YN)-

m To do so, alternate between importance sampling a whole
population from m,_1 to m,,

m and MCMC moves leaving 7, invariant at step n.
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