
Advanced Simulation - Lecture 8

Patrick Rebeschini

February 7th, 2018

Patrick Rebeschini Lecture 8 1/ 22

Outline

Various proposal distributions for the Metropolis-Hastings.

Some vizualizations to compare Metropolis-Hastings and
Gibbs.

Gibbs sampling as a particular case of Metropolis-Hastings!

Patrick Rebeschini Lecture 8 2/ 22

Metropolis-Hastings algorithm

Target distribution on X = Rd of density π (x).
Proposal: for any x, x? ∈ X we have q (x?|x) ≥ 0 and∫
X q (x?|x) dx? = 1.

Starting with X(1), for t = 2, 3, ...

1 Sample X? ∼ q
(
·|X(t−1)

)
.

2 Compute

α
(
X?|X(t−1)

)
= min

1,
π (X?) q

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)) q (X?|X(t−1))

 .
3 Sample U ∼ U[0,1]. If U ≤ α

(
X?|X(t−1)

)
, set X(t) = X?,

otherwise set X(t) = X(t−1).

Patrick Rebeschini Lecture 8 3/ 22

Sophisticated Proposals

“Langevin” proposal relies on

X? = X(t−1) + σ

2 ∇ log π|X(t−1) + σW

where W ∼ N (0, Id), so the Metropolis-Hastings
acceptance ratio is

π(X?)q(X(t−1) | X?)
π(X(t−1))q(X? | X(t−1))

= π(X?)
π(X(t−1))

N (X(t−1);X? + σ
2 .∇ log π|X? ;σ2)

N (X?;X(t−1) + σ
2 .∇ log π|X(t−1) ;σ2)

.

Possibility to use higher order derivatives:

X? = X(t−1) + σ

2
[
∇2 log π|X(t−1)

]−1
∇ log π|X(t−1) + σW.

Patrick Rebeschini Lecture 8 4/ 22

Sophisticated Proposals

We can use

q(X?|X(t−1)) = g(X?;ϕ(X(t−1)))

where g is a distribution on X of parameters ϕ(X(t−1)) and
ϕ is a deterministic mapping

π(X?)q(X(t−1)|X?)
π(X(t−1))q(X?|X(t−1))

= π(X?)g(X(t−1);ϕ(X?))
π(X(t−1))g(X?;ϕ(X(t−1)))

.

For instance, use heuristics borrowed from optimization
techniques.

Patrick Rebeschini Lecture 8 5/ 22

Sophisticated Proposals

The following link shows a comparison of
adaptive Metropolis-Hastings,
Gibbs sampling,
No U-Turn Sampler (e.g. Hamiltonian MCMC)

on a simple linear model.

twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

Patrick Rebeschini Lecture 8 6/ 22

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

Sophisticated Proposals

Assume you want to sample from a target π with
supp(π) ⊂ R+, e.g. the posterior distribution of a
variance/scale parameter.

Any proposed move, e.g. using a normal random walk, to
R− is a waste of time.

Given X(t−1), propose X? = exp(logX(t−1) + ε) with
ε ∼ N (0, σ2). What is the acceptance probability then?

α(X? | X(t−1)) = min
(

1, π(X?)
π(X(t−1))

q(X(t−1) | X?)
q(X? | X(t−1))

)

= min
(

1, π(X?)
π(X(t−1))

X?

X(t−1)

)
.

Why?

Patrick Rebeschini Lecture 8 7/ 22

Random Proposals

Assume you want to use
qσ2(X?|X(t−1)) = N (X;X(t−1), σ2) but you don’t know
how to pick σ2. You decide to pick a random σ2,? from a
distribution f(σ2):

σ2,? ∼ f(σ2,?), X?|σ2,? ∼ qσ2,?(·|X(t−1))

so that

q(X?|X(t−1)) =
∫
qσ2,?(X?|X(t−1))f(σ2,?)dσ2,?.

Perhaps q(X?|X(t−1)) cannot be evaluated, e.g. the above
integral is intractable. Hence the acceptance probability

min{1, π(X?)q(X(t−1)|X?)
π(X(t−1))q(X?|X(t−1))

}

cannot be computed.
Patrick Rebeschini Lecture 8 8/ 22

Random Proposals

Instead you decide to accept your proposal with probability

αt = min

1,
π (X?) qσ2,(t−1)

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)) qσ2,?

(
X?|X(t−1))


where σ2,(t−1) corresponds to parameter of the last
accepted proposal.

With probability αt, set σ2,(t) = σ2,?, X(t) = X?, otherwise
σ2,(t) = σ2,(t−1), X(t) = X(t−1).

Question: Is it valid? If so, why?

Patrick Rebeschini Lecture 8 9/ 22

Random Proposals

Consider the extended target

π̃
(
x, σ2

)
:= π (x) f

(
σ2
)
.

Previous algorithm is a Metropolis-Hastings of target
π̃(x, σ2) and proposal

q(y, τ2|x, σ2) = f(τ2)qτ2(y|x)

Indeed, we have

π̃(y, τ2)
π̃(x, σ2)

q(x, σ2|y, τ2)
q(y, τ2|x, σ2)

= π(y)f(τ2)
π(x)f(σ2)

f(σ2)qσ2(x|y)
f(τ2)qτ2(y|x) = π(y)

π(x)
qσ2(x|y)
qτ2(y|x)

Remark: we just need to be able to sample from f (·), not
to evaluate it.

Patrick Rebeschini Lecture 8 10/ 22

Using multiple proposals

Consider a target of density π (x) where x ∈ X.
To sample from π, you might want to use various proposals
for Metropolis-Hastings q1 (x′|x) , q2 (x′|x) , ..., qp (x′|x).
One way to achieve this is to build a proposal

q
(
x′
∣∣x) =

p∑
j=1

βjqj
(
x′
∣∣x) , βj > 0,

p∑
j=1

βj = 1,

and Metropolis-Hastings requires evaluating

α
(
X?|X(t−1)

)
= min

1,
π (X?) q

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)) q (X?|X(t−1))

 ,
and thus evaluating qj

(
X?|X(t−1)

)
for j = 1, ..., p.

Patrick Rebeschini Lecture 8 11/ 22

Motivating Example

Let

q
(
x′
∣∣x) = β1N

(
x′;x,Σ

)
+ (1− β1)N

(
x′;µ (x) ,Σ

)
where µ : X→ X is a clever but computationally expensive
deterministic optimisation algorithm.

Using β1 ≈ 1 will make most proposed points come from
the cheaper proposal distribution N (x′;x,Σ). . .

. . . but you won’t save time as µ
(
X(t−1)

)
needs to be

evaluated at every step.

Patrick Rebeschini Lecture 8 12/ 22

Composing kernels

How to use different proposals to sample from π without
evaluating all the densities at each step?

What about combining different Metropolis-Hastings
updates Kj using proposal qj instead? i.e.

Kj
(
x, x′

)
= αj

(
x′
∣∣x) qj (x′∣∣x)+ (1− aj (x)) δx

(
x′
)

where

αj(x′|x) = min
(

1, π(x′)qj(x|x′)
π(x)qj(x′|x)

)

aj(x) =
∫
αj(x′|x)qj(x′|x)dx′.

Patrick Rebeschini Lecture 8 13/ 22

Composing kernels

Generally speaking, assume

p possible updates characterised by kernels Kj (·, ·),

each kernel Kj is π-invariant.

Two possibilities of combining the p MCMC updates:

Cycle: perform the MCMC updates in a deterministic
order.

Mixture: Pick an MCMC update at random.

Patrick Rebeschini Lecture 8 14/ 22

Cycle of MCMC updates

Starting with X(1) iterate for t = 2, 3, ...

1 Set Z(t,0) := X(t−1).
2 For j = 1, ..., p, sample Z(t,j) ∼ Kj

(
Z(t,j−1), ·

)
.

3 Set X(t) := Z(t,p).

Full cycle transition kernel is

K
(
x(t−1), x(t)

)
=
∫
· · ·
∫
K1

(
x(t−1), z(t,1)

)
K2

(
z(t,1), z(t,2)

)
· · ·Kp

(
z(t,p−1), x(t)

)
dz(t,1) · · · dz(t,p−1).

K is π-invariant.

Patrick Rebeschini Lecture 8 15/ 22

Mixture of MCMC updates

Starting with X(1) iterate for t = 2, 3, ...

1 Sample J from {1, ..., p} with P (J = k) = βk.
2 Sample X(t) ∼ KJ

(
X(t−1), ·

)
.

Corresponding transition kernel is

K
(
x(t−1), x(t)

)
=

p∑
j=1

βjKj

(
x(t−1), x(t)

)
.

K is π-invariant.
The algorithm is different from using a mixture proposal

q
(
x′
∣∣x) =

p∑
j=1

βjqj
(
x′
∣∣x) .

Patrick Rebeschini Lecture 8 16/ 22

Metropolis-Hastings Design for Multivariate Targets

If dim (X) is large, it might be very difficult to design a
“good” proposal q (x′|x).

As in Gibbs sampling, we might want to partition x into
x = (x1, ..., xd) and denote x−j := x\ {xj}.

We propose “local” proposals where only xj is updated

qj
(
x′
∣∣x) = qj

(
x′j

∣∣∣x)︸ ︷︷ ︸
propose new component j

δx−j

(
x′−j

)
︸ ︷︷ ︸

keep other components fixed

.

Patrick Rebeschini Lecture 8 17/ 22

Metropolis-Hastings Design for Multivariate Targets

This yields

αj(x, x′) = min

1,
π(x′−j , x′j)qj(xj |x−j , x′j)
π(x−j , xj)qj(x′j |x−j , xj)

δx′−j
(x−j)

δx−j (x′−j)︸ ︷︷ ︸
=1


= min

(
1,
π(x−j , x′j)qj(xj |x−j , x′j)
π(x−j , xj)qj(x′j |x−j , xj)

)

= min
(

1,
πXj |X−j

(x′j |x−j)qj(xj |x−j , x′j)
πXj |X−j

(xj |x−j)qj(x′j |x−j , xj)

)
.

Patrick Rebeschini Lecture 8 18/ 22

One-at-a-time MH (cycle/systematic scan)

Starting with X(1) iterate for t = 2, 3, ...
For j = 1, ..., d,

Sample X? ∼ qj(·|X(t)
1 , . . . , X

(t)
j−1, X

(t−1)
j , ..., X

(t−1)
d).

Compute

αj = min

1,
πXj |X−j

(
X?
j | X

(t)
1 . . . X

(t)
j−1, X

(t−1)
j+1 . . . X

(t−1)
d

)
πXj |X−j

(
X

(t−1)
j | X(t)

1 . . . X
(t)
j−1, X

(t−1)
j+1 . . . X

(t−1)
d

)
×
qj
(
X

(t−1)
j

∣∣∣X(t)
1 ...X

(t)
j−1, X

?
j , X

(t−1)
j+1 ...X

(t−1)
d

)
qj
(
X?
j

∣∣∣X(t)
1 ...X

(t)
j−1, X

(t−1),
j , X

(t−1)
j+1 ...X

(t−1)
d

)
 .

With probability αj , set X(t) = X?, otherwise set
X(t) = X(t−1).

Patrick Rebeschini Lecture 8 19/ 22

One-at-a-time MH (mixture/random scan)

Starting with X(1) iterate for t = 2, 3, ...

Sample J from {1, ..., d} with P (J = k) = βk.
Sample X? ∼ qJ

(
·|X(t−1)

1 , ..., X
(t−1)
d

)
.

Compute

αJ = min

1,
πXJ |X−J

(
X?
J | X

(t−1)
1 . . . X

(t−1)
J−1 , X

(t−1)
J+1 . . .

)
πXJ |X−J

(
X

(t−1)
J | X(t−1)

1 . . . X
(t−1)
J−1 , X

(t−1)
J+1 . . .

)
×
qJ
(
X

(t−1)
J

∣∣∣X(t−1)
1 ...X

(t−1)
J−1 , X?

J , X
(t−1)
J+1 ...X

(t−1)
d

)
qJ
(
X?
J |X

(t−1)
1 ...X

(t−1)
J−1 , X

(t−1),
J , X

(t−1)
J+1 ...X

(t−1)
d

)
 .

With probability αJ set X(t) = X?, otherwise X(t) = X(t−1).

Patrick Rebeschini Lecture 8 20/ 22

Gibbs Sampler as a Metropolis-Hastings algorithm

Proposition. The systematic Gibbs sampler is a cycle of
one-at-a time MH whereas the random scan Gibbs sampler
is a mixture of one-at-a time MH where

qj
(
x′j

∣∣∣x) = πXj |X−j

(
x′j

∣∣∣x−j) .
Proof. It follows from

π
(
x−j , x

′
j

)
π (x−j , xj)

qj
(
xj |x−j , x′j

)
qj
(
x′j

∣∣∣x−j , xj)
=

π (x−j)πXj |X−j

(
x′j

∣∣∣x−j)
π (x−j)πXj |X−j

(xj |x−j)
πXj |X−j

(xj |x−j)

πXj |X−j

(
x′j

∣∣∣x−j)
= 1.

Patrick Rebeschini Lecture 8 21/ 22

This is not a Gibbs sampler

Consider a case where d = 2. From X
(t−1)
1 , X

(t−1)
2 at time t− 1:

Sample X?
1 ∼ π(X1 | X(t−1)

2), then X?
2 ∼ π(X2 | X?

1). The
proposal is then X? = (X?

1 , X
?
2).

Compute

αt = min
(

1, π(X?
1 , X

?
2)

π(X(t−1)
1 , X

(t−1)
2)

q(X(t−1) | X?

q(X? | X(t−1))

)

Accept X? or not based on αt, where here

αt 6= 1

!!

Patrick Rebeschini Lecture 8 22/ 22

