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m Various proposal distributions for the Metropolis-Hastings.

m Some vizualizations to compare Metropolis-Hastings and
Gibbs.

m Gibbs sampling as a particular case of Metropolis-Hastings!
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Metropolis-Hastings algorithm

m Target distribution on X = R? of density = (x).

m Proposal: for any z,2* € X we have ¢ (z*|z) > 0 and
S a (a*] 2) da* = 1.

m Starting with XM fort=2,3,..

Sample X* ~ ¢ (-|X(t*1)) )

Compute

T (X*) q (X(t—l)‘ X*)
* (t=1)\ _ ..;
« (X | X ) = min (1, - (X(t—l)) ‘ (X*]X(t—l))

Sample U ~ Upp y). If U < o ( X*[ XD, set X(O = X*,
otherwise set X(*) = x (=1,
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Sophisticated Proposals

m “Langevin” proposal relies on
X* = xt-1 % Viog 7| i1y + oW

where W ~ N (0, I), so the Metropolis-Hastings
acceptance ratio is

T(X*)g(X"D | X*)
m(X(E=D)g(X* | X (1)
o m(XY) N(XED: X* + 2 Viogn|xs;0?)
S (XD N (X XED + 2 Viog 7| y-1);02)

m Possibility to use higher order derivatives:

~1
X* = x4 % [VQ 10g7T|X(f—1)} Viegm|yu-1) +oW.
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Sophisticated Proposals

m We can use
g(X*| XYY = g(X*; p(X (1))

where g is a distribution on X of parameters ¢(X¢~1) and
© is a deterministic mapping

T(X*)a(XD]X7) T(X)g(X D5 p(X7))

m(XED)g(XHX D) m(X D) g(X*5 (X 1))

m For instance, use heuristics borrowed from optimization
techniques.
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Sophisticated Proposals

The following link shows a comparison of
m adaptive Metropolis-Hastings,
m Gibbs sampling,
m No U-Turn Sampler (e.g. Hamiltonian MCMC)

on a simple linear model.

twiecki.github.io/blog/2014/01/02 /visualizing-mcmc/
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Sophisticated Proposals

m Assume you want to sample from a target = with
supp(m) C R, e.g. the posterior distribution of a
variance/scale parameter.

m Any proposed move, e.g. using a normal random walk, to
R~ is a waste of time.

m Given X* Y propose X* = exp(log X1 4 g) with
e ~ N(0,0?). What is the acceptance probability then?

* (t—-1) *

R (XE1) g(X+ [ XC)
. m(X*) X*
- (1’ (X (1) X(t—l))

Why?
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Random Proposals

m Assume you want to use
g2 (X X 1) ) N(X; XD 52) but you don’t know
how to pick o2. You decide to plck a random o>* from a
distribution f(o?):

o~ f(0™), X0 ~ gy (X 1D)
so that
g0 1XD) = [ g (XX D) f (02 do
m Perhaps ¢(X*|X(#=1) cannot be evaluated, e.g. the above
integral is intractable. Hence the acceptance probability

(X*)q(XD]XY)
m(X D) g(X x| X =1)

}

min{1,

cannot be computed.
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Random Proposals

m Instead you decide to accept your proposal with probability

T (X) gy (XD X7
Qp = ImMin ]-a T (X(f—l)) qo-2’* (X*‘ X(t—l))

2,(t—1)

where o corresponds to parameter of the last

accepted proposal.

m With probability o, set 02(t) = g2* X = X* otherwise
o2t = 201 x (1) — x(t-1)

m Question: Is it valid? If so, why?
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Random Proposals

m Consider the extended target

T (.1',0’2) = (x)f (02) .

m Previous algorithm is a Metropolis-Hastings of target
7(z,0?) and proposal

q(y, 7w, 0%) = (7)) g2 (ylz)
m Indeed, we have

w(y, %)
(z,0?)
m(y)f
)

m(z

z, 0y, %)

q(

q(y, 7|z, 0?)

F(?) f(0%)d02 (2ly) _ 7(y) o2 (xly)
f(@?) [(T?)gr2(yle)  w(x) gr2(ylz)

m Remark: we just need to be able to sample from f (-), not
to evaluate it.
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Using multiple proposals

m Consider a target of density 7 () where x € X.

m To sample from 7, you might want to use various proposals
for Metropolis-Hastings ¢; (2'| z), ¢2 (2| ), ..., qp (2| ).

m One way to achieve this is to build a proposal
P
,|I' ZBJQ] )7ﬁj>0725]:1
j=1
and Metropolis-Hastings requires evaluating

o (X*|X(t_1)) — min (1’ Z(X*)q (X(t—l)‘X*> ) |

T X(t—l)) q (X*’ X(t—l))

and thus evaluating g¢; (X*| X ) for j=1,.
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Motivating Example

m Let
q(2'|z) = BN (252,8) + (1= BN (/s p(2),2)

where p : X — X is a clever but computationally expensive
deterministic optimisation algorithm.

m Using 1 =~ 1 will make most proposed points come from
the cheaper proposal distribution N (2/;z,%). ..

m ...but you won’t save time as p (X(tfl)) needs to be

evaluated at every step.
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Composing kernels

m How to use different proposals to sample from 7 without
evaluating all the densities at each step?

m What about combining different Metropolis-Hastings
updates K using proposal ¢; instead? i.e.

Kj (z,2') = aj (' 2) g; (2| 2) + (1 = a; (2)) 0z (')

where

O‘j(x/|$) = min (1, W)

m(z)g;(2'|z)

aj(x) = / aj(@|z)gj(x|z)de’.
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Composing kernels

Generally speaking, assume
m p possible updates characterised by kernels Kj (-, -),
m cach kernel K is m-invariant.

Two possibilities of combining the p MCMC updates:

m Cycle: perform the MCMC updates in a deterministic
order.

m Mixture: Pick an MCMC update at random.
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Cycle of MCMC updates

m Starting with X (1) iterate for t = 2,3, ...

Set Z(t0) .= x (t-1),
For j =1,...,p, sample Z3) K; (Z(t’j_l), ) .

Set X®) .= Z(tp),
m Full cycle transition kernel is

K (20, 20) =/--~/K1 (70, 20) Ky (201, 202)

K (209D, 20 4D L gz,

m K is w-invariant.
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Mixture of MCMC updates

m Starting with X (1) iterate for t = 2,3, ...

—

B Sample J from {1,...,p} with P(J = k) = f.
B Sample XY ~ K (X(t_l), )

[\

Corresponding transition kernel is

K (279,20 = S 4K, (2070, 20)
j=1

m K is wm-invariant.

m The algorithm is different from using a mixture proposal

p
I’x ZBJQJ /‘37
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Metropolis-Hastings Design for Multivariate Targets

m If dim (X) is large, it might be very difficult to design a
“good” proposal ¢ (2’| x).

m As in Gibbs sampling, we might want to partition z into
x = (21,...,24) and denote x_; := x\ {z;}.

m We propose “local” proposals where only x; is updated

g (2| z) = 4 (JL‘;‘ x) Oz_ (xl_j)
- —_—

propose new component j keep other components fixed
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Metropolis-Hastings Design for Multivariate Targets

m This yields

m(x’ 5, 2%)q ‘(xj\x_j,x;)%’_j(xfj)

(@, 25)q; (|5, 25) 00 (2L ;)

=1
— min (1777( —J» ]) ($J|xjvx;')>

m(z—j, x])q]( j|x—jv ;)

. Tx;1x_, (@lr—g)aj(xj]z—z, %)
= min | 1, =
TX,|X_; (@jlr—5)q;(@ j|x*ja$j)

aj(z,2’) = min | 1,
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One-at-a-time MH (cycle/systematic scan)

Starting with X () iterate for t = 2,3, ...

Forj=1,...d,
w Sample X* ~ g;(|X{",. X[ XYL x ),
m Compute

Ozj:

) x®  x® xt=D  -D
. ( i, (X1 X7 x0 XY x )
min | 1,

D v®  x0 pt1  0D
ﬂ‘Xj‘X_j(Xj | x L x P x DX )

o5 (X070 X0 x0, xz, XD x{-0) )

A AL
[ t t—1), —1 —1
g (x| 27 X0 X XD x )

m With probability o, set X(*) = X*, otherwise set
X0 — x-1)
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One-at-a-time MH (mixture/random scan)

Starting with X () iterate for t = 2,3, ...
m Sample J from {1,...,d} with P(J = k) = B.
m Sample X* ~ ¢; (\ XY*U, ...,X§t71)> .

m Compute

t—1 (t=1) (t-1)
_ ( o, (X1 XYL x D XD )
ay = min |1,

—1 t—1 t—1) (-1
TX Xy (X§ ap )...X§_1)7X§+1)...)

t—1 t—1 t=1) vy v (t—1 t—1

ar (X5 x 0 x 0 xg x X ))>
o1 (-1 t—1 t—1), (-1 t—1 :

gs (51 x{ VxS XD x P x Y

m With probability oy set X® = X™, otherwise X = x-1)
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Gibbs Sampler as a Metropolis-Hastings algorithm

m Proposition. The systematic Gibbs sampler is a cycle of
one-at-a time MH whereas the random scan Gibbs sampler
is a mixture of one-at-a time MH where

q; (l‘;‘l‘) =TX,|X_; (x;‘x_]) .

m Proof. It follows from

. / . . . ,
0 (:r_],xj) 4 (acjlm_J,xj)

™ (x5, 2;5) 4 (1’3’ T_j, :Uj)

T (T—) T x;1x_, ("E;‘mﬂ) Tx;x_,; (@] z—;)

™ (x_J) ﬂ-Xj‘X,j (‘rJ‘ x_J) 7TX].‘X7]. (x;‘ .T)_])

= 1.
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This is not a Gibbs sampler

(t—1) XQ(t—l)

Consider a case where d = 2. From X, at time ¢t — 1:

m Sample X} ~ m(X] | Xét_l)), then X3 ~ m(Xa | XT). The
proposal is then X* = (X7, X7).

m Compute

a; = min (1 (EXI)’
( 1 ’

m Accept X* or not based on a4, where here

Oét7é1

X3)  q(xtb !X*>
Xét 1)) q(X* | X(t71)>
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