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m Given a target 7 () = 7 (z1, 22, ..., x4), Gibbs sampling
works by sampling from 7 x |x_, (zjla_;) for j=1,....d.

m Sampling exactly from one of these conditionals might be a
hard problem itself.

m Even if it is possible, the Gibbs sampler might converge
slowly if components are highly correlated.

m If the components are not highly correlated then Gibbs
sampling performs well, even when d — oo, e.g. with an
error increasing “only” polynomially with d.

m Metropolis—Hastings algorithm (1953, 1970) is a more
general algorithm that can bypass these problems.

m Additionally Gibbs can be recovered as a special case.
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Metropolis—Hastings algorithm

m Target distribution on X = R? of density = (x).

m Proposal distribution: for any z,2’ € X, we have
q(2'|z) > 0and [xq(2'|z)ds’ =1.
m Starting with XM fort=2,3,..

Sample X* ~ ¢ (-|X(t*1)) )
Compute

T (X*) q (X(t—l)‘ X*)
* (t=1)\ _ ..;
a(X | X ) = min (1’7T(X(t—1))q(X*]X(t—1)) .

Sample U ~ Upp y). If U < o ( X*[ XD, set X(O = X*,
otherwise set X(*) = x (=1,
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm

m Metropolis—Hastings only requires point-wise evaluations of
7 (z) up to a normalizing constant; indeed if 7 (z) o< 7 ()
then

(%) ¢ (x(tfl)‘ x*) 7 (%) q (x(tfl)‘ x*)

7 @) q (2@ D)~ 7 (D) g (]2l D)

m At each iteration ¢, a candidate is proposed. The
probability of a candidate being accepted is given by

a (x(t_1)> = /Xoe (ac\ x(t_l)) q (x] x(t_l)) dx

in which case X® = X, otherwise X = x(t-1),

m This algorithm clearly defines a Markov chain (X (t))t>1.
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Transition Kernel and Reversibility

m Lemma. The transition kernel of the Metropolis—Hastings
algorithm is given by

K(y|z)=K(z,y) =aly | 2)qy | 2) + (1 —a(z))d(y)
where ¢, denotes the Dirac mass at x.

m Proof. We have
K(,y) = [ ala” |2){ala” | 0)3 () + (1 - ala" | 2)8,(4)}ds"
—aly| Daly] )+ { [ o | )1 - ala” | 2)ds" 6,10

—qy | 2)aly | 2)+ {1- [ 4" [2)ale | 2)da" } 6,(0)
=q(y | z)aly | z) +{1 - a(z)} & (y)-
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Reversibility

m Proposition. The Metropolis—Hastings kernel K is
m—reversible and thus admit 7 as invariant distribution.

m Proof. For any z,y € X, with x # y

m(z)K(z,y) = n(x)q(y | z)a(y | z)

If x = y, then obviously 7(z)K (z,y) = 7(y) K (y, x).
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Reducibility and periodicity of Metropolis—Hastings

m Consider the target distribution

7 (@) = (U (&) + Upg () /2

and the proposal distribution

q (2" 2) = Uz—5245) (7).

m The MH chain is reducible if § < 1: the chain stays either
in [0,1] or [2, 3].

m Note that the MH chain is aperiodic if it always has a
non-zero chance of staying where it is.
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Law of Large Numbers

m The MH chain (X(’f)>t>1 is irreducible if ¢ (z*| ) > 0 for

any z,z* € supp(m): every state can be reached in a single
step (strongly irreducible). Less strict conditions in
(Roberts & Rosenthal, 2004).

m The MH chain is Harris recurrent if it is irreducible (see
Tierney, 1994).

m Theorem. If the Markov chain generated by the
Metropolis—Hastings sampler is w—irreducible, then we
have for any integrable function ¢ : X — R:

it 3 (x0) = [Lotomti

for every starting value X,
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Random Walk Metropolis—Hastings

m In the Metropolis-Hastings, pick ¢(z* | z) = g(z* — z) with
g being a symmetric distribution, thus

X*=X+e e~y

e.g. ¢ is a zero-mean multivariate normal or t-student.

m Acceptance probability becomes

a(z* | ) = min (1, W@*)) .

m(x)

m We accept...

m a move to a more probable state with probability 1;
m a move to a less probable state with probability

m(z*)/7(z) < 1.
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Independent Metropolis—Hastings

m If the proposal distribution ¢(z* | ) does not depend on z,
we call it an independent proposal.

m Acceptance probability becomes

a(z* | ) = min (1, 71’(x*)q(x)> .

m(x)q(z*)

m For instance, multivariate normal or t-student distribution.

m If 7(x)/q(z) < M for all z and some M < oo, then the
chain is uniformly ergodic.

m [t can be shown that the acceptance probability at
stationarity is then at least 1/M (Lemma 7.9 of Robert &
Casella).

m On the other hand, if such an M does not exist, the chain
is not even geometrically ergodic!
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Choosing a good proposal distribution

m Goal: to design a Markov chain with small correlation
p (X (=1 X (t)) between subsequent values (why?).

m Two sources of correlation:
m between the current state X(*=1) and proposed value
X ~q (| xE0),
m correlation induced if X® = X(
rejected.

t=1) if proposal is

m Trade-off: there is a compromise between
m proposing large moves,
m obtaining a decent acceptance probability.

m For multivariate distributions: covariance of proposal
should reflect the covariance structure of the target.
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Choice of proposal

Target distribution, we want to sample from

0 1 05
m We use a random walk Metropolis—Hastings algorithm

with
g(e) :N(5;0,02 ((1) ?)) .

What is the optimal choice of ¢2?

We consider three choices: o2 = 0.12,1,102.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 0.12, the acceptance rate is ~ 94%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 0.12, the acceptance rate is ~ 94%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 1, the acceptance rate is ~ 52%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
0? = 1, the acceptance rate is ~ 52%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 10, the acceptance rate is ~ 1.5%.

Patrick Rebeschini Lecture 7 14/ 15



Metropolis—Hastings algorithm

0.6
0.4

density

0.2

0.0

0.8
0.6+

density 0-4-
0.2

0.0

Figure: Metropolis—Hastings on a bivariate Gaussian target. With
0? = 10, the acceptance rate is ~ 1.5%.
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Choice of proposal

m Aim at some intermediate acceptance ratio: 20%? 40%?
Some hints come from the literature on “optimal scaling”.

m Maximize the expected square jumping distance:

E || X1 — Xel?]

m In multivariate cases, try to mimick the covariance
structure of the target distribution.

Cooking recipe: run the algorithm for 7' iterations, check some
criterion, tune the proposal distribution accordingly, run the
algorithm for T iterations again ...

“Constructing a chain that mixes well is somewhat of an art.”
All of Statistics, L. Wasserman.
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The adaptive MCMC approach

m One can make the transition kernel K adaptive, i.e. use K;
at iteration ¢t and choose K; using the past sample
(Xh s 7Xt71)'

m The Markov chain is not homogeneous anymore: the
mathematical study of the algorithm is much more
complicated.

m Adaptation can be counterproductive in some cases (see
Atchadé & Rosenthal, 2005)!

m Adaptive Gibbs samplers also exist.

Patrick Rebeschini Lecture 7 15/ 15



