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Outline

Given a target π (x) = π (x1, x2, ..., xd), Gibbs sampling
works by sampling from πXj |X−j

(xj |x−j) for j = 1, ..., d.

Sampling exactly from one of these conditionals might be a
hard problem itself.

Even if it is possible, the Gibbs sampler might converge
slowly if components are highly correlated.

If the components are not highly correlated then Gibbs
sampling performs well, even when d→∞, e.g. with an
error increasing “only” polynomially with d.

Metropolis–Hastings algorithm (1953, 1970) is a more
general algorithm that can bypass these problems.
Additionally Gibbs can be recovered as a special case.
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Metropolis–Hastings algorithm

Target distribution on X = Rd of density π (x).
Proposal distribution: for any x, x′ ∈ X, we have
q (x′|x) ≥ 0 and

∫
X q (x′|x) dx′ = 1.

Starting with X(1), for t = 2, 3, ...

1 Sample X? ∼ q
(
·|X(t−1)

)
.

2 Compute

α
(
X?|X(t−1)

)
= min

1,
π (X?) q

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)) q (X?|X(t−1))

 .
3 Sample U ∼ U[0,1]. If U ≤ α

(
X?|X(t−1)

)
, set X(t) = X?,

otherwise set X(t) = X(t−1).
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Figure: Metropolis–Hastings on a bivariate Gaussian target.
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Figure: Metropolis–Hastings on a bivariate Gaussian target.
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Metropolis–Hastings algorithm

Metropolis–Hastings only requires point-wise evaluations of
π (x) up to a normalizing constant; indeed if π̃ (x) ∝ π (x)
then

π (x?) q
(
x(t−1)

∣∣∣x?)
π
(
x(t−1)) q (x?|x(t−1)) =

π̃ (x?) q
(
x(t−1)

∣∣∣x?)
π̃
(
x(t−1)) q (x?|x(t−1)) .

At each iteration t, a candidate is proposed. The
probability of a candidate being accepted is given by

a
(
x(t−1)

)
=
∫
X
α
(
x|x(t−1)

)
q
(
x|x(t−1)

)
dx

in which case X(t) = X, otherwise X(t) = X(t−1).
This algorithm clearly defines a Markov chain

(
X(t)

)
t≥1

.
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Transition Kernel and Reversibility

Lemma. The transition kernel of the Metropolis–Hastings
algorithm is given by

K(y | x) ≡ K(x, y) = α(y | x)q(y | x) + (1− a(x))δx(y)

where δx denotes the Dirac mass at x.

Proof. We have

K(x, y) =
∫
q(x? | x){α(x? | x)δx?(y) + (1− α(x? | x))δx(y)}dx?

= q(y | x)α(y | x) +
{∫

q(x? | x)(1− α(x? | x))dx?
}
δx(y)

= q(y | x)α(y | x) +
{

1−
∫
q(x? | x)α(x? | x)dx?

}
δx(y)

= q(y | x)α(y | x) + {1− a(x)} δx(y).
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Reversibility

Proposition. The Metropolis–Hastings kernel K is
π−reversible and thus admit π as invariant distribution.

Proof. For any x, y ∈ X, with x 6= y

π(x)K(x, y) = π(x)q(y | x)α(y | x)

= π(x)q(y | x)min
(

1, π(y)q(x | y)
π(x)q(y | x)

)
= min (π(x)q(y | x), π(y)q(x | y))

= π(y)q(x | y)min
(
π(x)q(y | x)
π(y)q(x | y) , 1

)
= π(y)K(y, x).

If x = y, then obviously π(x)K(x, y) = π(y)K(y, x).
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Reducibility and periodicity of Metropolis–Hastings

Consider the target distribution

π (x) =
(
U[0,1] (x) + U[2,3] (x)

)
/2

and the proposal distribution

q (x?|x) = U(x−δ,x+δ) (x?) .

The MH chain is reducible if δ ≤ 1: the chain stays either
in [0, 1] or [2, 3].

Note that the MH chain is aperiodic if it always has a
non-zero chance of staying where it is.
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Law of Large Numbers

The MH chain
(
X(t)

)
t≥1

is irreducible if q (x?|x) > 0 for
any x, x? ∈ supp(π): every state can be reached in a single
step (strongly irreducible). Less strict conditions in
(Roberts & Rosenthal, 2004).
The MH chain is Harris recurrent if it is irreducible (see
Tierney, 1994).
Theorem. If the Markov chain generated by the
Metropolis–Hastings sampler is π−irreducible, then we
have for any integrable function ϕ : X→ R:

lim
t→∞

1
t

t∑
i=1

ϕ
(
X(i)

)
=
∫
X
ϕ (x)π (x) dx

for every starting value X(1).
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Random Walk Metropolis–Hastings

In the Metropolis–Hastings, pick q(x? | x) = g(x? − x) with
g being a symmetric distribution, thus

X? = X + ε, ε ∼ g;

e.g. g is a zero-mean multivariate normal or t-student.
Acceptance probability becomes

α(x? | x) = min
(

1, π(x?)
π(x)

)
.

We accept...
a move to a more probable state with probability 1;
a move to a less probable state with probability

π(x?)/π(x) < 1.

Patrick Rebeschini Lecture 7 10/ 15



Independent Metropolis–Hastings

If the proposal distribution q(x? | x) does not depend on x,
we call it an independent proposal.
Acceptance probability becomes

α(x? | x) = min
(

1, π(x?)q(x)
π(x)q(x?)

)
.

For instance, multivariate normal or t-student distribution.
If π(x)/q(x) < M for all x and some M <∞, then the
chain is uniformly ergodic.
It can be shown that the acceptance probability at
stationarity is then at least 1/M (Lemma 7.9 of Robert &
Casella).
On the other hand, if such an M does not exist, the chain
is not even geometrically ergodic!
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Choosing a good proposal distribution

Goal: to design a Markov chain with small correlation
ρ
(
X(t−1), X(t)

)
between subsequent values (why?).

Two sources of correlation:
between the current state X(t−1) and proposed value
X ∼ q

(
·|X(t−1)

)
,

correlation induced if X(t) = X(t−1), if proposal is
rejected.

Trade-off: there is a compromise between
proposing large moves,
obtaining a decent acceptance probability.

For multivariate distributions: covariance of proposal
should reflect the covariance structure of the target.
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Choice of proposal

Target distribution, we want to sample from

π (x) = N
(
x;
(

0
0

)
,

(
1 0.5

0.5 1

))
.

We use a random walk Metropolis—Hastings algorithm
with

g (ε) = N
(
ε; 0, σ2

(
1 0
0 1

))
.

What is the optimal choice of σ2?
We consider three choices: σ2 = 0.12, 1, 102.

Patrick Rebeschini Lecture 7 13/ 15



Metropolis–Hastings algorithm

−2

0

2

0 2500 5000 7500 10000
step

X1

−2

0

2

0 2500 5000 7500 10000
step

X2

Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 0.12, the acceptance rate is ≈ 94%.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 0.12, the acceptance rate is ≈ 94%.

Patrick Rebeschini Lecture 7 14/ 15



Metropolis–Hastings algorithm

−2

0

2

0 2500 5000 7500 10000
step

X1

−2

0

2

0 2500 5000 7500 10000
step

X2

Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 1, the acceptance rate is ≈ 52%.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 1, the acceptance rate is ≈ 52%.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 10, the acceptance rate is ≈ 1.5%.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 10, the acceptance rate is ≈ 1.5%.
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Choice of proposal

Aim at some intermediate acceptance ratio: 20%? 40%?
Some hints come from the literature on “optimal scaling”.

Maximize the expected square jumping distance:

E
[
||Xt+1 −Xt||2

]

In multivariate cases, try to mimick the covariance
structure of the target distribution.

Cooking recipe: run the algorithm for T iterations, check some
criterion, tune the proposal distribution accordingly, run the
algorithm for T iterations again . . .
“Constructing a chain that mixes well is somewhat of an art.”
All of Statistics, L. Wasserman.
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The adaptive MCMC approach

One can make the transition kernel K adaptive, i.e. use Kt

at iteration t and choose Kt using the past sample
(X1, . . . , Xt−1).

The Markov chain is not homogeneous anymore: the
mathematical study of the algorithm is much more
complicated.

Adaptation can be counterproductive in some cases (see
Atchadé & Rosenthal, 2005)!

Adaptive Gibbs samplers also exist.
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