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Markov chain Monte Carlo

m We are interested in sampling from a distribution =, for
instance a posterior distribution in a Bayesian framework.

m Markov chains with 7 as invariant distribution can be
constructed to approximate expectations with respect to .

m For example, the Gibbs sampler generates a Markov chain
targeting m defined on R using the full conditionals

ﬂ(l’i | LlyeoeyLj—1yLj41s--- ,wd).
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Gibbs Sampling

m Assume you are interested in sampling from
m(x) =7 (x1,22, ..., Tq) -

m Notation: T_4 = ($1, cers Lj—1, Tj4-1, ...,J}d).

Systematic scan Gibbs sampler. Let (Xfl), ...,Xf(ll)) be the
initial state then iterate for t = 2,3, ...

L. Sample X{t) ~ XX <'| Xg(tfl), ...,Xgil)) )

j. Sample

() 0) (0 5D (t-1)
X} N7TX].|X_].<-|X1 e X3 XY X )

d. Sample Xc(lt) ~ XX (\ Xft), ~~aXC(21) .
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Gibbs Sampling

m [s the joint distribution 7 uniquely specified by the
conditional distributions 7x, x_,7

m Does the Gibbs sampler provide a Markov chain with the
correct stationary distribution 7?7

m If yes, does the Markov chain converge towards this
invariant distribution?

m It will turn out to be the case under some mild conditions.

Patrick Rebeschini Lecture 6 4/ 25



Hammersley-Clifford Theorem

m Theorem. Consider a distribution whose density
7 (21,22, ..., 24) is such that supp(r) = ®%_;supp(ny,).
Then for any (21, ..., z4) € supp(m), we have

¢ ix, (2] 2151, 21 1a)

(21,22, ..., xqg) X

i T, (2T 2ina)

m Proof: we have

T(T10-1,2d) = Txyx_,(Tdl T1.0-1)7(T1.a-1),
T(T14-1,2d) = Txyx_,(zal T1.a-1)7(T1:0-1)-
Therefore

Tx X _o(Td] T1:0-1)
T x g x_q(2d T1:0-1)

7T<331:d) = 7T(361:d71, Zd)
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Hammersley-Clifford Theorem

m Similarly, we have

T (T1:4-1, 2d) = TXq_11X_(a—1) (zd-1] T1:0-2, 2a) T (T1:4-2; 2d) »
T (T1:d—2, 2d-1,2d) = T X4 1|X_(q_yy (Zd—1| T1:d-2, 2a) T (T1:d-2, 24)

hence

T Xq_11X_(a—1) (xdfl‘ T1:d—2, 2d)

7 (r1:q) = T(T1:4-2, 21, Zd)
’ CT Xy Xy (Za-1] T1:d-2, Za)

Tx X _y (Tal T1.a-1)
Tx x_g (Zal T1:0-1)

m By iterating, we obtain the theorem, where the
multiplicative constant is exactly m(z1,..., 2zq).
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Example: Non-Integrable Target

m Consider the following conditionals on R™

T X, |X, (T1] 72) = T2 exp (—T271)

T Xy x; (72| 1) = 71 €xp (—z122) -
We might expect that these full conditionals define a joint
probability density m (x1,x2).

m Hammersley-Clifford would give

TX1| X2 (1] 22) T X5| X, (z2]21)
(21,22, ..., Tg) X
T X1 |Xo (21| 22) T Xo|X1 (22| 71)
_ Zexp (—z9mw1) 1 exp (—x122) x exp (—a12)
29 exp (—z221) 1 exp (—x122)
However [ [ exp (—zj22)dz1dxs is not finite so
T X, |Xo (z1] 22) = 2 exp (—x921) and

T x,|x; (1] 72) = 21 exp (—x172) are not compatible.
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Example: Positivity condition violated

Figure: Gibbs sampling targeting
m(w,y) o< Lj_1,0)x[1,0]U[0,1] x[0,1] (Z> Y)-
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Invariance of the Gibbs sampler

m The kernel of the Gibbs sampler (case d = 2) is

1)) (t))

K(x(t_1)7$(t)) = 7TX1\X2(901 | 902 T X5 X1 ($2) | @
m Case d > 2:

K(2"Y, 20) = HWXJ-\X—J t |x1] 1’x§t+112!)

m Proposition: The systematic scan Gibbs sampler kernel
admits 7 as invariant distribution.
m Proof for d = 2. We have

| K@@z = [ 7z |yl | 2)n(ar, z2)dadas

=7(ys | yl)' m(y1 | w2)7(z2)dws

=7(y2 | y1)7m(y1) = 7(y1, y2) = 7(y).
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Irreducibility and Recurrence

m Proposition: Assume 7 satisfies the positivity condition,
then the Gibbs sampler yields a m—irreducible and
recurrent Markov chain.

m Theorem. Assume the positivity condition is satisfied
then we have for any integrable function ¢ : X — R:

lim — an /np

for m—almost all starting value X ().
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Example: Bivariate Normal Distribution

m Let X := (X1, Xo) ~ N (i, ) where p = (u1, p2) and

SO
p o3 )’

m The Gibbs sampler proceeds as follows in this case

Sample X\ ~ A (m +p/o3 (Xét D uz) o7 — p2/0§)
Sample XQ ~N (/Lz +p/o? (Xl( ) _ Ml) /01)

m By proceeding this way, we generate a Markov chain X (*)
whose successive samples are correlated. If successive
values of X () are strongly correlated, then we say that the
Markov chain mixes slowly.
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Bivariate Normal Distribution

Figure: Case where p = 0.1, first 100 steps.
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Bivariate Normal Distribution

Figure: Case where p = 0.99, first 100 steps.
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Bivariate Normal Distribution

-2 0 2 -2 0 2
X X

Figure: Histogram of the first component of the chain after 1000
iterations. Small p on the left, large p on the right.
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Bivariate Normal Distribution

-2 0 2 -2 0 2
X X

Figure: Histogram of the first component of the chain after 10000
iterations. Small p on the left, large p on the right.
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Bivariate Normal Distribution

-2 0 2 -2 0 2
X X

Figure: Histogram of the first component of the chain after 100000
iterations. Small p on the left, large p on the right.
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Gibbs Sampling and Auxiliary Variables

m Gibbs sampling requires sampling from 7 x |x_..

m In many scenarios, we can include a set of auxiliary
variables Z1, ..., Z,, and have an “extended” distribution of
joint density 7 (21, ..., 4, 21, ..., 2p) such that

/ﬁ(ml, s Xy By ey Zp) d21.d2g = T (21, ..., 24q) -

which is such that its full conditionals are easy to sample.

m Mixture models, Capture-recapture models, Tobit models,
Probit models etc.
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Mixtures of Normals

- mixture
- population 1
population 2
population 3

density

m Independent data y1, ..., y,

t

Yi| 0 ~ ipk/\f (Mk:aal%)

k=1
_ 2 2
where 0 = (D1, .., DKy i1y ooy K5 0Ty ooy O ).
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Bayesian Model

m Likelihood function

& Ly (yi_ﬂk)2))
| 0) = :10) = exp | =L _BE Y]
(1) = [ o H(z — p< -

Let’s fix K =2, 07 = 1 and py = 1/K for all k.

m Prior model

K
=[] »(u)
k=1
where
pue ~ N (v, Bg) -
Let us fix ap = 0, 8 = 1 for all k.
m Not obvious how to sample p(u1 | 2, Y1, - -, Yn)-
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Auxiliary Variables for Mixture Models

m Associate to each Y; an auxiliary variable Z; € {1,..., K}
such that

P(Z; = k|6) = py and Yi| Zi = k,0 ~ N (g, o})

so that

p(yil0) = Z]P’ (yz‘;uk,@%)

m The extended posterior is given by
p(0, 21,y 20| Y1,y Yn) x p(0) H P(z|0)p(yi| zi,0) .
i=1
m Gibbs samples alternately

P( Zl:n‘ yl:n’,ulzK)
b (Nl:K| Y1, Zl:n) .
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Gibbs Sampling for Mixture Model

m We have "
P(Z1:n|y1:n79):H]P)(Zi‘yivg)
i=1
where
P (2] 0) p (vil 2,0
P (2|11, 0) (2 0) p (yil 2i,0)

SR P (2 = K[ 0)p (il 21 = . 0)

m Let ng = 3700 Ly (20) ek = 2oimq Yiley (2:) then

Nk 1
_n NN< , >
Nk|zl.n Y1:n 1+ ng 1+n,
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Mixtures of Normals
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Figure: 200 points sampled from 1N(—2,1) + 1M(2,1).
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Figure: Histogram of the parameters obtained by 10,000 iterations of
Gibbs sampling.

Patrick Rebeschini Lecture 6 23/ 25



ixtures of Normals
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Figure: Traceplot of the parameters obtained by 10,000 iterations of
Gibbs sampling.
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Gibbs sampling in practice

m Many posterior distributions can be automatically
decomposed into conditional distributions by computer
programs.

m This is the idea behind BUGS (Bayesian inference Using
Gibbs Sampling), JAGS (Just another Gibbs Sampler).
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