Advanced Simulation - Lecture 6

Patrick Rebeschini

January 31th, 2018

Markov chain Monte Carlo

- We are interested in sampling from a distribution π, for instance a posterior distribution in a Bayesian framework.
- Markov chains with π as invariant distribution can be constructed to approximate expectations with respect to π.
- For example, the Gibbs sampler generates a Markov chain targeting π defined on \mathbb{R}^{d} using the full conditionals

$$
\pi\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)
$$

Gibbs Sampling

- Assume you are interested in sampling from

$$
\pi(x)=\pi\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

- Notation: $x_{-i}:=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}\right)$.

Systematic scan Gibbs sampler. Let $\left(X_{1}^{(1)}, \ldots, X_{d}^{(1)}\right)$ be the initial state then iterate for $t=2,3, \ldots$

1. Sample $X_{1}^{(t)} \sim \pi_{X_{1} \mid X_{-1}}\left(\cdot \mid X_{2}^{(t-1)}, \ldots, X_{d}^{(t-1)}\right)$.
j. Sample

$$
X_{j}^{(t)} \sim \pi_{X_{j} \mid X_{-j}}\left(\cdot \mid X_{1}^{(t)}, \ldots, X_{j-1}^{(t)}, X_{j+1}^{(t-1)}, \ldots, X_{d}^{(t-1)}\right)
$$

d. Sample $X_{d}^{(t)} \sim \pi_{X_{d} \mid X_{-d}}\left(\cdot \mid X_{1}^{(t)}, \ldots, X_{d-1}^{(t)}\right)$.

Gibbs Sampling

- Is the joint distribution π uniquely specified by the conditional distributions $\pi_{X_{i} \mid X_{-i}}$?

■ Does the Gibbs sampler provide a Markov chain with the correct stationary distribution π ?

- If yes, does the Markov chain converge towards this invariant distribution?
- It will turn out to be the case under some mild conditions.

Hammersley-Clifford Theorem

- Theorem. Consider a distribution whose density $\pi\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is such that $\operatorname{supp}(\pi)=\otimes_{i=1}^{d} \operatorname{supp}\left(\pi_{X_{i}}\right)$. Then for any $\left(z_{1}, \ldots, z_{d}\right) \in \operatorname{supp}(\pi)$, we have

$$
\pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) \propto \prod_{j=1}^{d} \frac{\pi_{X_{j} \mid X_{-j}}\left(x_{j} \mid x_{1: j-1}, z_{j+1: d}\right)}{\pi_{X_{j} \mid X_{-j}}\left(z_{j} \mid x_{1: j-1}, z_{j+1: d}\right)}
$$

- Proof: we have

$$
\begin{aligned}
& \pi\left(x_{1: d-1}, x_{d}\right)=\pi_{X_{d} \mid X_{-d}}\left(x_{d} \mid x_{1: d-1}\right) \pi\left(x_{1: d-1}\right) \\
& \pi\left(x_{1: d-1}, z_{d}\right)=\pi_{X_{d} \mid X_{-d}}\left(z_{d} \mid x_{1: d-1}\right) \pi\left(x_{1: d-1}\right)
\end{aligned}
$$

Therefore

$$
\pi\left(x_{1: d}\right)=\pi\left(x_{1: d-1}, z_{d}\right) \frac{\pi_{X_{d} \mid X_{-d}}\left(x_{d} \mid x_{1: d-1}\right)}{\pi_{X_{d} \mid X_{-d}}\left(z_{d} \mid x_{1: d-1}\right)}
$$

Hammersley-Clifford Theorem

- Similarly, we have

$$
\begin{aligned}
& \pi\left(x_{1: d-1}, z_{d}\right)=\pi_{X_{d-1} \mid X_{-(d-1)}}\left(x_{d-1} \mid x_{1: d-2}, z_{d}\right) \pi\left(x_{1: d-2}, z_{d}\right) \\
& \pi\left(x_{1: d-2}, z_{d-1}, z_{d}\right)=\pi_{X_{d-1} \mid X_{-(d-1)}}\left(z_{d-1} \mid x_{1: d-2}, z_{d}\right) \pi\left(x_{1: d-2}, z_{d}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\pi\left(x_{1: d}\right) & =\pi\left(x_{1: d-2}, z_{d-1}, z_{d}\right) \frac{\pi_{X_{d-1} \mid X_{-(d-1)}}\left(x_{d-1} \mid x_{1: d-2}, z_{d}\right)}{\pi_{X_{d-1} \mid X_{-(d-1)}}\left(z_{d-1} \mid x_{1: d-2}, z_{d}\right)} \\
& \times \frac{\pi_{X_{d} \mid X_{-d}}\left(x_{d} \mid x_{1: d-1}\right)}{\pi_{X_{d} \mid X_{-d}}\left(z_{d} \mid x_{1: d-1}\right)}
\end{aligned}
$$

- By iterating, we obtain the theorem, where the multiplicative constant is exactly $\pi\left(z_{1}, \ldots, z_{d}\right)$.

Example: Non-Integrable Target

- Consider the following conditionals on \mathbb{R}^{+}

$$
\begin{aligned}
& \pi_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=x_{2} \exp \left(-x_{2} x_{1}\right) \\
& \pi_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=x_{1} \exp \left(-x_{1} x_{2}\right)
\end{aligned}
$$

We might expect that these full conditionals define a joint probability density $\pi\left(x_{1}, x_{2}\right)$.

- Hammersley-Clifford would give

$$
\begin{aligned}
\pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) & \propto \frac{\pi_{X_{1} \mid X_{2}}\left(x_{1} \mid z_{2}\right)}{\pi_{X_{1} \mid X_{2}}\left(z_{1} \mid z_{2}\right)} \frac{\pi_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)}{\pi_{X_{2} \mid X_{1}}\left(z_{2} \mid x_{1}\right)} \\
& =\frac{z_{2} \exp \left(-z_{2} x_{1}\right) x_{1} \exp \left(-x_{1} x_{2}\right)}{z_{2} \exp \left(-z_{2} z_{1}\right) x_{1} \exp \left(-x_{1} z_{2}\right)} \propto \exp \left(-x_{1} x_{2}\right)
\end{aligned}
$$

However $\iint \exp \left(-x_{1} x_{2}\right) d x_{1} d x_{2}$ is not finite so
$\pi_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=x_{2} \exp \left(-x_{2} x_{1}\right)$ and
$\pi_{X_{2} \mid X_{1}}\left(x_{1} \mid x_{2}\right)=x_{1} \exp \left(-x_{1} x_{2}\right)$ are not compatible.

Example: Positivity condition violated

Figure: Gibbs sampling targeting
$\pi(x, y) \propto \mathbb{1}_{[-1,0] \times[-1,0] \cup[0,1] \times[0,1]}(x, y)$.

Invariance of the Gibbs sampler

- The kernel of the Gibbs sampler (case $d=2$) is

$$
K\left(x^{(t-1)}, x^{(t)}\right)=\pi_{X_{1} \mid X_{2}}\left(x_{1}^{(t)} \mid x_{2}^{(t-1)}\right) \pi_{X_{2} \mid X_{1}}\left(x_{2}^{(t)} \mid x_{1}^{(t)}\right)
$$

- Case $d>2$:

$$
K\left(x^{(t-1)}, x^{(t)}\right)=\prod_{j=1}^{d} \pi_{X_{j} \mid X_{-j}}\left(x_{j}^{(t)} \mid x_{1: j-1}^{(t)}, x_{j+1: d}^{(t-1)}\right)
$$

- Proposition: The systematic scan Gibbs sampler kernel admits π as invariant distribution.
- Proof for $d=2$. We have

$$
\begin{aligned}
& \int K(x, y) \pi(x) d x=\int \pi\left(y_{2} \mid y_{1}\right) \pi\left(y_{1} \mid x_{2}\right) \pi\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\pi\left(y_{2} \mid y_{1}\right) \int \pi\left(y_{1} \mid x_{2}\right) \pi\left(x_{2}\right) d x_{2} \\
& =\pi\left(y_{2} \mid y_{1}\right) \pi\left(y_{1}\right)=\pi\left(y_{1}, y_{2}\right)=\pi(y)
\end{aligned}
$$

Irreducibility and Recurrence

- Proposition: Assume π satisfies the positivity condition, then the Gibbs sampler yields a π-irreducible and recurrent Markov chain.
- Theorem. Assume the positivity condition is satisfied then we have for any integrable function $\varphi: \mathbb{X} \rightarrow \mathbb{R}$:

$$
\lim \frac{1}{t} \sum_{i=1}^{t} \varphi\left(X^{(i)}\right)=\int_{\mathbb{X}} \varphi(x) \pi(x) d x
$$

for π-almost all starting value $X^{(1)}$.

Example: Bivariate Normal Distribution

■ Let $X:=\left(X_{1}, X_{2}\right) \sim \mathcal{N}(\mu, \Sigma)$ where $\mu=\left(\mu_{1}, \mu_{2}\right)$ and

$$
\Sigma=\left(\begin{array}{ll}
\sigma_{1}^{2} & \rho \\
\rho & \sigma_{2}^{2}
\end{array}\right)
$$

- The Gibbs sampler proceeds as follows in this case

I Sample $X_{1}^{(t)} \sim \mathcal{N}\left(\mu_{1}+\rho / \sigma_{2}^{2}\left(X_{2}^{(t-1)}-\mu_{2}\right), \sigma_{1}^{2}-\rho^{2} / \sigma_{2}^{2}\right)$
$\boxed{2}$ Sample $X_{2}^{(t)} \sim \mathcal{N}\left(\mu_{2}+\rho / \sigma_{1}^{2}\left(X_{1}^{(t)}-\mu_{1}\right), \sigma_{2}^{2}-\rho^{2} / \sigma_{1}^{2}\right)$.

- By proceeding this way, we generate a Markov chain $X^{(t)}$ whose successive samples are correlated. If successive values of $X^{(t)}$ are strongly correlated, then we say that the Markov chain mixes slowly.

Bivariate Normal Distribution

Figure: Case where $\rho=0.1$, first 100 steps.

Bivariate Normal Distribution

Figure: Case where $\rho=0.99$, first 100 steps.

Bivariate Normal Distribution

Figure: Histogram of the first component of the chain after 1000 iterations. Small ρ on the left, large ρ on the right.

Bivariate Normal Distribution

Figure: Histogram of the first component of the chain after 10000 iterations. Small ρ on the left, large ρ on the right.

Bivariate Normal Distribution

Figure: Histogram of the first component of the chain after 100000 iterations. Small ρ on the left, large ρ on the right.

Gibbs Sampling and Auxiliary Variables

- Gibbs sampling requires sampling from $\pi_{X_{j} \mid X_{-j}}$.
- In many scenarios, we can include a set of auxiliary variables Z_{1}, \ldots, Z_{p} and have an "extended" distribution of joint density $\bar{\pi}\left(x_{1}, \ldots, x_{d}, z_{1}, \ldots, z_{p}\right)$ such that

$$
\int \bar{\pi}\left(x_{1}, \ldots, x_{d}, z_{1}, \ldots, z_{p}\right) d z_{1} \ldots d z_{d}=\pi\left(x_{1}, \ldots, x_{d}\right)
$$

which is such that its full conditionals are easy to sample.

- Mixture models, Capture-recapture models, Tobit models, Probit models etc.

Mixtures of Normals

- Independent data y_{1}, \ldots, y_{n}.

$$
Y_{i} \mid \theta \sim \sum_{k=1}^{K} p_{k} \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

where $\theta=\left(p_{1}, \ldots, p_{K}, \mu_{1}, \ldots, \mu_{K}, \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}\right)$.

Bayesian Model

- Likelihood function

$$
p\left(y_{1}, \ldots, y_{n} \mid \theta\right)=\prod_{i=1}^{n} p\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n}\left(\sum_{k=1}^{K} \frac{p_{k}}{\sqrt{2 \pi \sigma_{k}^{2}}} \exp \left(-\frac{\left(y_{i}-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right)\right)
$$

Let's fix $K=2, \sigma_{k}^{2}=1$ and $p_{k}=1 / K$ for all k.
■ Prior model

$$
p(\theta)=\prod_{k=1}^{K} p\left(\mu_{k}\right)
$$

where

$$
\mu_{k} \sim \mathcal{N}\left(\alpha_{k}, \beta_{k}\right)
$$

Let us fix $\alpha_{k}=0, \beta_{k}=1$ for all k.
■ Not obvious how to sample $p\left(\mu_{1} \mid \mu_{2}, y_{1}, \ldots, y_{n}\right)$.

Auxiliary Variables for Mixture Models

- Associate to each Y_{i} an auxiliary variable $Z_{i} \in\{1, \ldots, K\}$ such that

$$
\mathbb{P}\left(Z_{i}=k \mid \theta\right)=p_{k} \text { and } Y_{i} \mid Z_{i}=k, \theta \sim \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

so that

$$
p\left(y_{i} \mid \theta\right)=\sum_{k=1}^{K} \mathbb{P}\left(Z_{i}=k\right) \mathcal{N}\left(y_{i} ; \mu_{k}, \sigma_{k}^{2}\right)
$$

- The extended posterior is given by

$$
p\left(\theta, z_{1}, \ldots, z_{n} \mid y_{1}, \ldots, y_{n}\right) \propto p(\theta) \prod_{i=1}^{n} \mathbb{P}\left(z_{i} \mid \theta\right) p\left(y_{i} \mid z_{i}, \theta\right)
$$

- Gibbs samples alternately

$$
\begin{aligned}
& \mathbb{P}\left(z_{1: n} \mid y_{1: n}, \mu_{1: K}\right) \\
& p\left(\mu_{1: K} \mid y_{1: n}, z_{1: n}\right) .
\end{aligned}
$$

Gibbs Sampling for Mixture Model

- We have

$$
\mathbb{P}\left(z_{1: n} \mid y_{1: n}, \theta\right)=\prod_{i=1}^{n} \mathbb{P}\left(z_{i} \mid y_{i}, \theta\right)
$$

where

$$
\mathbb{P}\left(z_{i} \mid y_{i}, \theta\right)=\frac{\mathbb{P}\left(z_{i} \mid \theta\right) p\left(y_{i} \mid z_{i}, \theta\right)}{\sum_{k=1}^{K} \mathbb{P}\left(z_{i}=k \mid \theta\right) p\left(y_{i} \mid z_{i}=k, \theta\right)}
$$

■ Let $n_{k}=\sum_{i=1}^{n} \mathbf{1}_{\{k\}}\left(z_{i}\right), n_{k} \bar{y}_{k}=\sum_{i=1}^{n} y_{i} \mathbf{1}_{\{k\}}\left(z_{i}\right)$ then

$$
\mu_{k} \mid z_{1: n}, y_{1: n} \sim \mathcal{N}\left(\frac{n_{k} \bar{y}_{k}}{1+n_{k}}, \frac{1}{1+n_{k}}\right) .
$$

Mixtures of Normals

Figure: 200 points sampled from $\frac{1}{2} \mathcal{N}(-2,1)+\frac{1}{2} \mathcal{N}(2,1)$.

Mixtures of Normals

Figure: Histogram of the parameters obtained by 10,000 iterations of Gibbs sampling.

Mixtures of Normals

variable $-\mu_{1}-\mu_{2}$

Figure: Traceplot of the parameters obtained by 10,000 iterations of Gibbs sampling.

Gibbs sampling in practice

- Many posterior distributions can be automatically decomposed into conditional distributions by computer programs.
- This is the idea behind BUGS (Bayesian inference Using Gibbs Sampling), JAGS (Just another Gibbs Sampler).

