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Markov chain Monte Carlo

We are interested in sampling from a distribution π, for
instance a posterior distribution in a Bayesian framework.

Markov chains with π as invariant distribution can be
constructed to approximate expectations with respect to π.

For example, the Gibbs sampler generates a Markov chain
targeting π defined on Rd using the full conditionals

π(xi | x1, . . . , xi−1, xi+1, . . . , xd).
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Gibbs Sampling

Assume you are interested in sampling from

π (x) = π (x1, x2, ..., xd) .

Notation: x−i := (x1, ..., xi−1, xi+1, ..., xd).

Systematic scan Gibbs sampler. Let
(
X

(1)
1 , ..., X

(1)
d

)
be the

initial state then iterate for t = 2, 3, ...

1. Sample X(t)
1 ∼ πX1|X−1

(
·|X(t−1)

2 , ..., X
(t−1)
d

)
.

· · ·
j. Sample
X

(t)
j ∼ πXj |X−j

(
·|X(t)

1 , ..., X
(t)
j−1, X

(t−1)
j+1 , ..., X

(t−1)
d

)
.

· · ·

d. Sample X(t)
d ∼ πXd|X−d

(
·|X(t)

1 , ..., X
(t)
d−1

)
.
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Gibbs Sampling

Is the joint distribution π uniquely specified by the
conditional distributions πXi|X−i

?

Does the Gibbs sampler provide a Markov chain with the
correct stationary distribution π?

If yes, does the Markov chain converge towards this
invariant distribution?

It will turn out to be the case under some mild conditions.
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Hammersley-Clifford Theorem

Theorem. Consider a distribution whose density
π (x1, x2, ..., xd) is such that supp(π) = ⊗d

i=1supp(πXi).
Then for any (z1, ..., zd) ∈ supp(π), we have

π (x1, x2, ..., xd) ∝
d∏

j=1

πXj |X−j
(xj |x1:j−1, zj+1:d)

πXj |X−j
(zj |x1:j−1, zj+1:d) .

Proof: we have

π(x1:d−1, xd) = πXd|X−d
(xd|x1:d−1)π(x1:d−1),

π(x1:d−1, zd) = πXd|X−d
(zd|x1:d−1)π(x1:d−1).

Therefore

π(x1:d) = π(x1:d−1, zd)
πXd|X−d

(xd|x1:d−1)
πXd|X−d

(zd|x1:d−1) .

Patrick Rebeschini Lecture 6 5/ 25



Hammersley-Clifford Theorem

Similarly, we have

π (x1:d−1, zd) = πXd−1|X−(d−1) (xd−1|x1:d−2, zd)π (x1:d−2, zd) ,
π (x1:d−2, zd−1, zd) = πXd−1|X−(d−1) (zd−1|x1:d−2, zd)π (x1:d−2, zd)

hence

π (x1:d) = π(x1:d−2, zd−1, zd)
πXd−1|X−(d−1) (xd−1|x1:d−2, zd)
πXd−1|X−(d−1) (zd−1|x1:d−2, zd)

×
πXd|X−d

(xd|x1:d−1)
πXd|X−d

(zd|x1:d−1)

By iterating, we obtain the theorem, where the
multiplicative constant is exactly π(z1, . . . , zd).
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Example: Non-Integrable Target

Consider the following conditionals on R+

πX1|X2 (x1|x2) = x2 exp (−x2x1)
πX2|X1 (x2|x1) = x1 exp (−x1x2) .

We might expect that these full conditionals define a joint
probability density π (x1, x2).
Hammersley-Clifford would give

π (x1, x2, ..., xd) ∝
πX1|X2 (x1| z2)
πX1|X2 (z1| z2)

πX2|X1 (x2|x1)
πX2|X1 (z2|x1)

= z2 exp (−z2x1)x1 exp (−x1x2)
z2 exp (−z2z1)x1 exp (−x1z2) ∝ exp (−x1x2) .

However
∫ ∫

exp (−x1x2) dx1dx2 is not finite so
πX1|X2 (x1|x2) = x2 exp (−x2x1) and
πX2|X1 (x1|x2) = x1 exp (−x1x2) are not compatible.
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Example: Positivity condition violated
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Figure: Gibbs sampling targeting
π(x, y) ∝ 1[−1,0]×[−1,0]∪[0,1]×[0,1](x, y).
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Invariance of the Gibbs sampler

The kernel of the Gibbs sampler (case d = 2) is

K(x(t−1), x(t)) = πX1|X2(x(t)
1 | x

(t−1)
2 )πX2|X1(x(t)

2 | x
(t)
1 )

Case d > 2:

K(x(t−1), x(t)) =
d∏

j=1
πXj |X−j

(x(t)
j | x

(t)
1:j−1, x

(t−1)
j+1:d)

Proposition: The systematic scan Gibbs sampler kernel
admits π as invariant distribution.
Proof for d = 2. We have∫

K(x, y)π(x)dx =
∫
π(y2 | y1)π(y1 | x2)π(x1, x2)dx1dx2

= π(y2 | y1)
∫
π(y1 | x2)π(x2)dx2

= π(y2 | y1)π(y1) = π(y1, y2) = π(y).
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Irreducibility and Recurrence

Proposition: Assume π satisfies the positivity condition,
then the Gibbs sampler yields a π−irreducible and
recurrent Markov chain.

Theorem. Assume the positivity condition is satisfied
then we have for any integrable function ϕ : X→ R:

lim 1
t

t∑
i=1

ϕ
(
X(i)

)
=
∫
X
ϕ (x)π (x) dx

for π−almost all starting value X(1).
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Example: Bivariate Normal Distribution

Let X := (X1, X2) ∼ N (µ,Σ) where µ = (µ1, µ2) and

Σ =
(
σ2

1 ρ
ρ σ2

2

)
.

The Gibbs sampler proceeds as follows in this case

1 Sample X(t)
1 ∼ N

(
µ1 + ρ/σ2

2

(
X

(t−1)
2 − µ2

)
, σ2

1 − ρ2/σ2
2

)
2 Sample X(t)

2 ∼ N
(
µ2 + ρ/σ2

1

(
X

(t)
1 − µ1

)
, σ2

2 − ρ2/σ2
1

)
.

By proceeding this way, we generate a Markov chain X(t)

whose successive samples are correlated. If successive
values of X(t) are strongly correlated, then we say that the
Markov chain mixes slowly.
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Bivariate Normal Distribution
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Figure: Case where ρ = 0.1, first 100 steps.
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Bivariate Normal Distribution
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Figure: Case where ρ = 0.99, first 100 steps.
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Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after 1000
iterations. Small ρ on the left, large ρ on the right.
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Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after 10000
iterations. Small ρ on the left, large ρ on the right.
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Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after 100000
iterations. Small ρ on the left, large ρ on the right.
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Gibbs Sampling and Auxiliary Variables

Gibbs sampling requires sampling from πXj |X−j
.

In many scenarios, we can include a set of auxiliary
variables Z1, ..., Zp and have an “extended” distribution of
joint density π (x1, ..., xd, z1, ..., zp) such that∫

π (x1, ..., xd, z1, ..., zp) dz1...dzd = π (x1, ..., xd) .

which is such that its full conditionals are easy to sample.
Mixture models, Capture-recapture models, Tobit models,
Probit models etc.
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Mixtures of Normals

-2 -1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

t

de
ns
it
y

mixture
population 1
population 2
population 3

Independent data y1, ..., yn

Yi| θ ∼
K∑

k=1
pkN

(
µk, σ

2
k

)
where θ =

(
p1, ..., pK , µ1, ..., µK , σ

2
1, ..., σ

2
K

)
.
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Bayesian Model

Likelihood function

p (y1, ..., yn| θ) =
n∏

i=1
p (yi| θ) =

n∏
i=1

 K∑
k=1

pk√
2πσ2

k

exp
(
−(yi − µk)

2σ2
k

2) .
Let’s fix K = 2, σ2

k = 1 and pk = 1/K for all k.
Prior model

p (θ) =
K∏

k=1
p (µk)

where
µk ∼ N (αk, βk) .

Let us fix αk = 0, βk = 1 for all k.
Not obvious how to sample p(µ1 | µ2, y1, . . . , yn).
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Auxiliary Variables for Mixture Models

Associate to each Yi an auxiliary variable Zi ∈ {1, ...,K}
such that

P (Zi = k| θ) = pk and Yi|Zi = k, θ ∼ N
(
µk, σ

2
k

)
so that

p (yi| θ) =
K∑

k=1
P (Zi = k)N

(
yi;µk, σ

2
k

)
The extended posterior is given by

p (θ, z1, ..., zn| y1, ..., yn) ∝ p (θ)
n∏

i=1
P (zi| θ) p (yi| zi, θ) .

Gibbs samples alternately

P(z1:n| y1:n, µ1:K)
p (µ1:K | y1:n, z1:n) .
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Gibbs Sampling for Mixture Model

We have
P (z1:n| y1:n, θ) =

n∏
i=1

P (zi| yi, θ)

where

P (zi| yi, θ) = P (zi| θ) p (yi| zi, θ)∑K
k=1 P (zi = k| θ) p (yi| zi = k, θ)

Let nk =
∑n

i=1 1{k} (zi) , nkyk =
∑n

i=1 yi1{k} (zi) then

µk| z1:n, y1:n ∼ N
(
nkyk

1 + nk
,

1
1 + nk

)
.
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Mixtures of Normals
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Figure: 200 points sampled from 1
2N (−2, 1) + 1

2N (2, 1).
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Mixtures of Normals
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Figure: Histogram of the parameters obtained by 10, 000 iterations of
Gibbs sampling.
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Mixtures of Normals
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Figure: Traceplot of the parameters obtained by 10, 000 iterations of
Gibbs sampling.

Patrick Rebeschini Lecture 6 24/ 25



Gibbs sampling in practice

Many posterior distributions can be automatically
decomposed into conditional distributions by computer
programs.

This is the idea behind BUGS (Bayesian inference Using
Gibbs Sampling), JAGS (Just another Gibbs Sampler).
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