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Limits of standard Monte Carlo methods

m Monte Carlo methods yield convergence rates in 1/4/n,
which is independent of the dimension d.

m On close inspection, the error still depends on d, through
the constant in front of the rate.

m Unfortunately that “constant” (in n) typically explodes
exponentially with d.

m Markov chain Monte Carlo methods yield errors which
explodes only polynomially in d, at least under some
conditions.
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Markov chain Monte Carlo

m Revolutionary idea introduced by Metropolis et al., J.
Chemical Physics, 1953.

m Key idea: Given a target distribution 7, build a Markov
chain (X¢);5, such that, as t — oo, Xy ~ 7 and

1 n
Y e () - [ @) de
"=

when n — oo e.g. almost surely.

m Also central limit theorems with a rate in 1//n.
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Markov chains - discrete space

m Let X be discrete, e.g. X =7Z.
m (X});>; is a Markov chain if
P(Xy =m| Xy =21, X1 = 741)
:P(Xt = .Tt‘ Xt,1 = xtfl).

m Homogeneous Markov chains:

Vm € N : P(Xf = y‘ Xt_l = x) = ]P)(Xt-i-m, = y’ Xt+’rn,—1 = .Z')

m The Markov transition kernel is

K(i,j) = K;j = P( X, = j| Xy—1 =9).

Patrick Rebeschini Lecture 5 4/ 23



Markov chains - discrete space

m Let p(x) = P(Xy = x), the chain rule yields
t

P(Xl = 33‘1,X2 = Z9, ...,Xt = l‘t) = ,ul(xl) H Kﬁfi—lxi'
1=2

m The m-transition matrix K™ as
K,Z»}L = P(Xsm = j| Xt =1).
m Chapman-Kolmogorov equation:

m4+n __ m N
K" = ) KiK.
keX

m We obtain
pe+1(J) = Z pe(4) K
i
i.e. using “linear algebra notation”,

p1 = KK
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Irreducibility and aperiodicity

m A Markov chain is said to be irreducible if all the states
communicate with each other, that is

Vo, y € X inf{t:K;y>O}<oo.

m A state = has period d(x) defined as

dz) =ged{s >1: K;, >0}.

m An irreducible chain is aperiodic if all states have period 1.

m Example: Ky = f _ é —0 is irreducible if

0 € [0,1) and aperiodic if 6 € (0,1). If 8 = 0, the ged is 2.
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Transience and recurrence

m Introduce the number of visits to x:

k=1

m For a Markov chain, a state x is termed transient if:
E. (7736) < 00,
where E, refers to the law of the chain starting from x.

m A state is called recurrent otherwise and
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Invariant distribution

m Definition: A distribution 7 is invariant for a Markov

kernel K, if
K =m.

m Note: if there exists ¢ such that X; ~ 7, then
Xt—i—s ~ T

for all s € N.
m Example: for any 6 € [0, 1]

9 19
K9:< 1-0 ¢ >

admits

NI
DI —
N———

=

as invariant distribution.
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Detailed balance

m A Markov kernel K satisfies detailed balance for 7 if

Vo, y € X m(x) Ky = m(y) Kye.

m Lemma: If K satisfies detailed balance for 7 then K is
m-invariant.

m If K satisfies detailed balance for m then the Markov chain
is reversible, i.e. at stationarity,

Vw,yEX: P(XtZQC’Xt—s—l:y):P(XtZHC!Xt_1:y).
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Lack of reversibility

1/3 1/3 1/3
mlet P=| 1 0 0
0 1 0
m Check 7P =7 for m = (1/2,1/3,1/6).

P cannot be 7 reversible as

1=-3—=2-=1
is a possible sequence whereas
1-2—=-3—-1

is not (as Po3 = 0).

m Detailed balance does not hold as o Pag = 0 # 73 Pss.
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Remarks

m All finite space Markov chains have at least one stationary
distribution but not all stationary distributions are also
limiting distributions.

04 06 0 0
02 08 0 0
0 0 0.4 0.6
0 0 0.2 0.8

P =

Two left eigenvectors of eigenvalue 1:

m = (1/4,3/4,0,0),
m = (0,0,1/4,3/4)

depending on the initial state, two different stationary
distributions.
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Equilibrium

m Proposition: If a discrete space Markov chain is aperiodic
and irreducible, and has an invariant distribution, then

VeeX P, (Xy=2) — 7(x),

t—o0
for any starting distribution u.

m In the Monte Carlo perspective, we will be primarily
interested in convergence of empirical averages, such as

~ 1 5.
b= e (X0 5 1= e @)
= X

m Before turning to these “ergodic theorems”, let us consider
continuous spaces.
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Markov chains - continuous space

The state space X is now continuous, e.g. R%.

m (Xt);5; is a Markov chain if for any (measurable) set A,
[P(Xt S A| Xi=z1,X9o=29,.... X1 = l’tfl)
:]P)(Xt S A| Xy 1= xt_1>.
m We have

P(X, € Al Xim =) = [ K (@y)dy =K (@.4).
A

that is conditional on X;_1 = z, X; is a random variable
which admits a probability density function K (z, ).

m K : X2 = R is the kernel of the Markov chain.
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Markov chains - continuous space

m Denoting pq the pdf of X7, we obtain directly

t
P(Xy € A,..., Xy € Ay) = / pr (z1) [ K (w1, 2) day - - - day.
Ap e x Ay o

m Denoting by p; the distribution of X,
Chapman-Kolmogorov equation reads

i @) = [ i @K (@.y)da

and similarly for m > 1

prin ) = [ 1@ K™ (@, y)do

where
t+m

K™ (x4, 44m) = /mi1 H K (xp—1,2k) deipr - doipim—1.
k=t+1
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m Consider the autoregressive (AR) model
Xt =pXi1+ Vi

where V;, "X A7 (0,72). This defines a Markov process such
that

1 1
K (o) = =g o0 (~ 505 (= pa)?)

m We also have

m
Xipm = p" Xt + Z P ik
k=1

so in the Gaussian case

m..\2
Km(.’lf,y): 1 exp <_;(y_p x) )
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Irreducibility and aperiodicity

m Given a distribution p over X, a Markov chain is
p-irreducible if

VeeX VA:pu(A)>0 3teN K'(x,A)>0.

m A p-irreducible Markov chain of transition kernel K is
periodic if there exists some partition of the state space
X1, ...,Xy for d > 2, such that

1 j=i+smodd

Vi, j,t,s: P(Xeyps € X Xy €X) = { 0 otherwise.

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence

m For any measurable set A of X let

na= Y Ta(Xp).
k=1

m A p-irreducible Markov chain is recurrent if for any
measurable set A C X: p(A) > 0, then

Ve e A E;(na) = oc.

m A p-irreducible Markov chain is Harris recurrent if for any
measurable set A C X : 1 (A) > 0, then

VeeX Py(na=o00)=1.

m Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

m A distribution of density 7 is invariant or stationary for a
Markov kernel K, if

[ 7@ K @y de = ().
X

m A Markov kernel K is w-reversible if
vt [ [ $wym @) K (@) dody
Z//f(y,x)ﬂ(fff)K(w,y) drdy

where f is a bounded measurable function.
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Detailed balance

m In practice it is easier to check the detailed balance
condition:

Vao,y € X w(a)K(z,y) = 7(y)K(y, x)
m Lemma: If detailed balance holds, then m is invariant for
K and K is m-reversible.

m Example: the Gaussian AR process is w-reversible,
m-invariant for

when |p| < 1.
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Selected asymptotic results

m Theorem. If K is a w-irreducible, m-invariant Markov
kernel, then for any integrable function ¢ : X — R:

1
lim —
t—oot

o) = [ o)) da

almost surely, for m— almost all starting value x.

m Theorem. If K is a w-irreducible, m-invariant, Harris
recurrent Markov chain, then for any integrable function
p: X =R

almost surely, for any starting value z.
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Selected asymptotic results

m Theorem. Suppose the kernel K is m-irreducible,
m-invariant, aperiodic. Then, we have

t—o00

lim /X‘Kt (z,y) —Tr(y)’dy:O

for m—almost all starting value x.

m Under some additional conditions, one can prove that a
chain is geometrically ergodic, i.e. there exists p < 1 and a
function M : X — R™ such that for all measurable set A:

[K" (2, A) = m(A)| < M(x)p",

for all n € N. In other words, we can obtain a rate of
convergence.
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Central Limit Theorem

m Theorem. Under regularity conditions, for a Harris
recurrent, m-invariant Markov chain, we can prove

t—o00

ﬂ[ /gp dx] —>N(00‘ (gp)),
where the asymptotic variance can be written

0% (p) = Vz [p (X1)] +2 3 Covz [p (X1) , 9 (X)) -
k=2

m This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which
the variance would be V. (¢(X)).
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Central Limit Theorem

m Example: for the AR Gaussian model,
7 (z) = N (2;0,7%/(1 — p?)) for [p| <1 and

Cov (X1, Xy) = p" 'V [X1] = p*!

m Therefore with ¢ (z) = z,

2 2
9 T 1+p7 T

which increases when p — 1.
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