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Limits of standard Monte Carlo methods

Monte Carlo methods yield convergence rates in 1/
√
n,

which is independent of the dimension d.

On close inspection, the error still depends on d, through
the constant in front of the rate.

Unfortunately that “constant” (in n) typically explodes
exponentially with d.

Markov chain Monte Carlo methods yield errors which
explodes only polynomially in d, at least under some
conditions.
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Markov chain Monte Carlo

Revolutionary idea introduced by Metropolis et al., J.
Chemical Physics, 1953.

Key idea: Given a target distribution π, build a Markov
chain (Xt)t≥1 such that, as t→∞, Xt ∼ π and

1
n

n∑
t=1

ϕ (Xt)→
∫
ϕ (x)π (x) dx

when n→∞ e.g. almost surely.

Also central limit theorems with a rate in 1/
√
n.
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Markov chains - discrete space

Let X be discrete, e.g. X = Z.

(Xt)t≥1 is a Markov chain if

P(Xt = xt|X1 = x1, ..., Xt−1 = xt−1)
=P(Xt = xt|Xt−1 = xt−1).

Homogeneous Markov chains:

∀m ∈ N : P(Xt = y|Xt−1 = x) = P(Xt+m = y|Xt+m−1 = x).

The Markov transition kernel is

K(i, j) = Kij = P(Xt = j|Xt−1 = i).

Patrick Rebeschini Lecture 5 4/ 23



Markov chains - discrete space

Let µt(x) = P (Xt = x), the chain rule yields

P(X1 = x1, X2 = x2, ..., Xt = xt) = µ1(x1)
t∏
i=2

Kxi−1xi .

The m-transition matrix Km as

Km
ij = P(Xt+m = j|Xt = i).

Chapman-Kolmogorov equation:

Km+n
ij =

∑
k∈X

Km
ikK

n
kj .

We obtain
µt+1(j) =

∑
i

µt(i)Kij

i.e. using “linear algebra notation”,

µt+1 = µtK.
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Irreducibility and aperiodicity

A Markov chain is said to be irreducible if all the states
communicate with each other, that is

∀x, y ∈ X inf
{
t : Kt

xy > 0
}
<∞.

A state x has period d(x) defined as

d(x) = gcd {s ≥ 1 : Ks
xx > 0} .

An irreducible chain is aperiodic if all states have period 1.

Example: Kθ =
(
θ 1− θ
1− θ θ

)
is irreducible if

θ ∈ [0, 1) and aperiodic if θ ∈ (0, 1). If θ = 0, the gcd is 2.
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Transience and recurrence

Introduce the number of visits to x:

ηx :=
∞∑
k=1

1x (Xk) .

For a Markov chain, a state x is termed transient if:

Ex (ηx) <∞,

where Ex refers to the law of the chain starting from x.

A state is called recurrent otherwise and

Ex (ηx) =∞.
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Invariant distribution

Definition: A distribution π is invariant for a Markov
kernel K, if

πK = π.

Note: if there exists t such that Xt ∼ π, then

Xt+s ∼ π

for all s ∈ N.
Example: for any θ ∈ [0, 1]

Kθ =
(
θ 1− θ
1− θ θ

)

admits
π =

(
1
2

1
2

)
as invariant distribution.
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Detailed balance

A Markov kernel K satisfies detailed balance for π if

∀x, y ∈ X : π(x)Kxy = π(y)Kyx.

Lemma: If K satisfies detailed balance for π then K is
π-invariant.

If K satisfies detailed balance for π then the Markov chain
is reversible, i.e. at stationarity,

∀x, y ∈ X : P(Xt = x|Xt+1 = y) = P(Xt = x|Xt−1 = y).
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Lack of reversibility

Let P =

 1/3 1/3 1/3
1 0 0
0 1 0

.

Check πP = π for π = (1/2, 1/3, 1/6).
P cannot be π reversible as

1→ 3→ 2→ 1

is a possible sequence whereas

1→ 2→ 3→ 1

is not (as P2,3 = 0).
Detailed balance does not hold as π2P23 = 0 6= π3P32.
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Remarks

All finite space Markov chains have at least one stationary
distribution but not all stationary distributions are also
limiting distributions.

P =


0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.2 0.8


Two left eigenvectors of eigenvalue 1:

π1 = (1/4, 3/4, 0, 0) ,
π2 = (0, 0, 1/4, 3/4)

depending on the initial state, two different stationary
distributions.
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Equilibrium

Proposition: If a discrete space Markov chain is aperiodic
and irreducible, and has an invariant distribution, then

∀x ∈ X Pµ (Xt = x) −−−→
t→∞

π(x),

for any starting distribution µ.

In the Monte Carlo perspective, we will be primarily
interested in convergence of empirical averages, such as

În = 1
n

n∑
t=1

ϕ (Xt)
a.s.−−−→
n→∞

I =
∑
x∈X

ϕ (x)π(x).

Before turning to these “ergodic theorems”, let us consider
continuous spaces.
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Markov chains - continuous space

The state space X is now continuous, e.g. Rd.

(Xt)t≥1 is a Markov chain if for any (measurable) set A,

P(Xt ∈ A|X1 = x1, X2 = x2, ..., Xt−1 = xt−1)
=P(Xt ∈ A|Xt−1 = xt−1).

We have

P(Xt ∈ A|Xt−1 = x) =
∫
A
K (x, y) dy = K (x,A) ,

that is conditional on Xt−1 = x, Xt is a random variable
which admits a probability density function K (x, ·).

K : X2 → R is the kernel of the Markov chain.
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Markov chains - continuous space

Denoting µ1 the pdf of X1, we obtain directly

P(X1 ∈ A1, ..., Xt ∈ At) =
∫
A1×···×At

µ1 (x1)
t∏

k=2
K (xk−1, xk) dx1 · · · dxt.

Denoting by µt the distribution of Xt,
Chapman-Kolmogorov equation reads

µt (y) =
∫
X
µt−1(x)K(x, y)dx

and similarly for m > 1

µt+m (y) =
∫
X
µt(x)Km(x, y)dx

where

Km (xt, xt+m) =
∫
Xm−1

t+m∏
k=t+1

K (xk−1, xk) dxt+1 · · · dxt+m−1.
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Example

Consider the autoregressive (AR) model

Xt = ρXt−1 + Vt

where Vt
i.i.d.∼ N

(
0, τ2). This defines a Markov process such

that
K (x, y) = 1√

2πτ2
exp

(
− 1

2τ2 (y − ρx)2
)
.

We also have

Xt+m = ρmXt +
m∑
k=1

ρm−kVt+k

so in the Gaussian case

Km (x, y) = 1√
2πτ2

m

exp
(
−1

2
(y − ρmx)2

τ2
m

)

with τ2
m = τ2∑m

k=1
(
ρ2)m−k = τ2 1−ρ2m

1−ρ2 .
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Irreducibility and aperiodicity

Given a distribution µ over X, a Markov chain is
µ-irreducible if

∀x ∈ X ∀A : µ(A) > 0 ∃t ∈ N Kt (x,A) > 0.

A µ-irreducible Markov chain of transition kernel K is
periodic if there exists some partition of the state space
X1, ...,Xd for d ≥ 2, such that

∀i, j, t, s : P (Xt+s ∈ Xj |Xt ∈ Xi) =
{

1 j = i+ s mod d
0 otherwise. .

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence

For any measurable set A of X, let

ηA =
∞∑
k=1

IA (Xk) .

A µ-irreducible Markov chain is recurrent if for any
measurable set A ⊂ X : µ (A) > 0, then

∀x ∈ A Ex (ηA) =∞.

A µ-irreducible Markov chain is Harris recurrent if for any
measurable set A ⊂ X : µ (A) > 0, then

∀x ∈ X Px (ηA =∞) = 1.

Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

A distribution of density π is invariant or stationary for a
Markov kernel K, if∫

X
π (x)K (x, y) dx = π (y) .

A Markov kernel K is π-reversible if

∀f
∫ ∫

f(x, y)π (x)K (x, y) dxdy

=
∫ ∫

f(y, x)π (x)K (x, y) dxdy

where f is a bounded measurable function.
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Detailed balance

In practice it is easier to check the detailed balance
condition:

∀x, y ∈ X π(x)K(x, y) = π(y)K(y, x)

Lemma: If detailed balance holds, then π is invariant for
K and K is π-reversible.

Example: the Gaussian AR process is π-reversible,
π-invariant for

π (x) = N
(
x; 0, τ2

1− ρ2

)

when |ρ| < 1.
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Selected asymptotic results

Theorem. If K is a π-irreducible, π-invariant Markov
kernel, then for any integrable function ϕ : X→ R:

lim
t→∞

1
t

t∑
i=1

ϕ (Xi) =
∫
X
ϕ (x)π (x) dx

almost surely, for π− almost all starting value x.

Theorem. If K is a π-irreducible, π-invariant, Harris
recurrent Markov chain, then for any integrable function
ϕ : X→ R:

lim
t→∞

1
t

t∑
i=1

ϕ (Xi) =
∫
X
ϕ (x)π (x) dx

almost surely, for any starting value x.
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Selected asymptotic results

Theorem. Suppose the kernel K is π-irreducible,
π-invariant, aperiodic. Then, we have

lim
t→∞

∫
X

∣∣∣Kt (x, y)− π (y)
∣∣∣ dy = 0

for π−almost all starting value x.

Under some additional conditions, one can prove that a
chain is geometrically ergodic, i.e. there exists ρ < 1 and a
function M : X→ R+ such that for all measurable set A:

|Kn(x,A)− π(A)| ≤M(x)ρn,

for all n ∈ N. In other words, we can obtain a rate of
convergence.
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Central Limit Theorem

Theorem. Under regularity conditions, for a Harris
recurrent, π-invariant Markov chain, we can prove

√
t

[
1
t

t∑
i=1

ϕ (Xi)−
∫
X
ϕ (x)π (x) dx

]
D−−−→

t→∞
N
(
0, σ2 (ϕ)

)
,

where the asymptotic variance can be written

σ2 (ϕ) = Vπ [ϕ (X1)] + 2
∞∑
k=2

Covπ [ϕ (X1) , ϕ (Xk)] .

This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which
the variance would be Vπ(ϕ(X)).
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Central Limit Theorem

Example: for the AR Gaussian model,
π (x) = N

(
x; 0, τ2/(1− ρ2)

)
for |ρ| < 1 and

Cov (X1, Xk) = ρk−1V [X1] = ρk−1 τ2

1− ρ2 .

Therefore with ϕ (x) = x,

σ2(ϕ) = τ2

1− ρ2

(
1 + 2

∞∑
k=1

ρk
)

= τ2

1− ρ2
1 + ρ

1− ρ = τ2

(1− ρ)2 ,

which increases when ρ→ 1.
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