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pling Methods

m For Monte Carlo methods, you need samples from
distributions.

m Seen: inversion, transformation, composition, rejection.

m Today: importance sampling.
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Importance Sampling

m We want to compute

I=E(¢(X)) = [ ¢(@)7(x)dr.

m We do not know how to sample from the target = but have
access to a proposal distribution of density gq.

We only require that
m(z) > 0= q(x) > 0;

i.e. the support of ¢ includes the support of .

q is called the proposal, or importance, distribution.
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Importance Sampling

m We have the following identity
I'=Er(p(X)) = Eq(o(X)w (X)),

where w : X — R™T is the importance weight function

m Hence for X4,..., X, LES q,

m [t can be interpreted as performing the following
approximation of 7

1 n
715 (da) = Zw dz) .
i=1
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Importance Sampling Properties

m SLLN: If E;(|o(X)|w (X)) < oo then lim_ IS =r.

m Unbiased: E, (f,[LS) =1.

m Variance & CLT: V, (ES) = o} /n where

ois = Vg (p(X)w (X))

and

lim +/n

n—oo (
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Importance Sampling: Practical Advices

m Consistency does not require O'IQS < oo but highly
recommended in practice (!).

m Sufficient condition: If E; (¢*(X)) < oo and w (z) < M
for all x for some M < oo, then O'IQS < 00.

m In practice ensure w (z) < M although it is neither
necessary nor sufficient, as seen in the following example.
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Importance Sampling: Example

w7 () =N (2;0,1), ¢(x) = N (7;0,0?).

For 02 > 1, w(z) < M for all z,
and for 02 < 1, w (x) — oo as |z| — oo.

2

m For ¢ (z) = 22, we have o7 < oo for all 02 > 1/2.

For ¢ () = exp (gxz), we have I < oo for § < 1

buta%szooforﬂ>1—#.
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Optimal Importance Distribution

m Proposition: The optimal proposal minimising V, (ELS) is
given by
p(z)| 7 ()
Gopt (T) = .
» Jx lo(@)| 7 (z) dz
m Proof. We have indeed

Y, (p(X)w (X)) = B, (9*(X)w? (X)) = I*

For ¢ = qopt, we have

(13 7T2 ac
By (#2(X)0? (X)) = W e [ le@ir @

- ([le@ir@ar)

We also have by Jensen’s inequality for any ¢

Eq (SDQ(X)U)Q( )) >E2(\g0( (/ lo(z)| 7 (x dx) .
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Optimal Importance Distribution

dopt () can never be used in practice!

For ¢ (z) > 0 we have gopt (2) = ¢(z)7 (z) /I and
Viopt (ﬁs) = 0 but this is because

n

it requires knowing I!

This can be used as a guideline to select ¢; i.e. select g ()
such that ¢ () = gopt ().

Particularly interesting in rare event simulation, not quite
in statistics.
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Normalised Importance Sampling

m Standard IS has limited applications in statistics as it
requires knowing 7 (z) and ¢ (z) exactly.

m Assume 7(z) = Cr X my(z) and q(z) = Cy X qu(x),
m(xz) > 0= ¢(z) > 0 and and define

m An alternative identity is

I =B (X)) = “j;fjj;)gﬁqmdx.

=
=
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m Let Xy,..., X, g q then

FNIS _ i1 (X)) wyu (X;)

! 21 wu(Xi)

is strongly consistent through the SLLN as long as
Eq(Jo(X)w (X)) < oo.

m Variance of IS:

X

v (1) = 1 / (p(x)m(x) — Iq(x)”

") q()

while variance of NIS (using the Delta method):

v (fln\IIS> _ 1/77($)2 (o(z) — I)zdx'

n

q(z)
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Details on the Delta method

With g : (z )7 — x/y we have

Voo o (b -5

and thus

V9 = (lle —/%')T
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Toy Example: t-distribution

m We want to compute I = E.(|X]|) where
m(z) x (1+ 952/3)_2 (t3-distribution).

Directly sample from .
Use q1 (z) = g1, () o< (1+22) " (t;-distribution).
Use g2 () o< exp (—22/2) (normal).

0.4+
0.3
y0.2-
ool =—— ! —
-5.0 -2.5 0.0 25 5.0

Functions —xmi(x) — g1 (x) —a2(x) —1(x)
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Toy Example: t-distribution
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Figure: Sample weights obtained for 1000 realisations of X;, from the
different proposal distributions.
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Toy Example: t-distribution

mn d1 F]
10.0
estimate 1.0 ————
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number of samples

Figure: Estimates IAn of I obtained after 1 to 1500 samples. The grey
shaded areas correpond to the range of 100 independent replications.
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Variance of importance sampling estimators

m Standard Importance Sampling: X,..., X, ud q,
1 n
i=1

m Thus the asymptotic variance can be estimated
consistently with
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Variance of importance sampling estimators

m Normalised Importance Sampling: X1,..., X, id q,
s _ i1 P(Xi)wu(Xi)
! 2oie wa(Xi)

m Asymptotic Variance:

By [(p(X)w(X) — I x w(X))?]
E, [w(X)]’

Vas (jNIS) =

n

m Thus the asymptotic variance can be estimated
consistently with

£ S (0 () ~ S

(258, wa(xy)”
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Diagnostics

m If only one weight, say w,(X}), is significant compared to
the others, then

FNIS _ Pt (X)) wu (X5) N ,
EE S TRE AR

The “effective sample size” is one.

m To how many unweighted samples correspond our weighted
samples of size n? Solve for n, in

%Vas (j;IL\TIS) = 22’

where 02 /n. corresponds to the variance of an unweighted
sample of size ne.
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Diagnostics

NIS

m We solve by matching ¢(X;) — with o(X;) — I =~ o as

if they were i.i.d samples:

3TN el (00 (o) - IS)° 2

S wu<Xi>)2 e
1 aXbwa(X)? 1
st m)

m The solution is

( ”1wu(XZ))2
i wu(Xi)?

and is called the effective sample size.

Ne —
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Rejection and Importance Sampling in High Dimensions

m Toy example: Let X = R? and

1 - a?
™) = Gy <_2>

and

m How do Rejection sampling and Importance sampling scale
in this context?
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Performance of Rejection Sampling

m We have
m(x) 4 Y @ ( 1 ) d
e e — P <
w (z) () o exp ( 5 )=
for o > 1.

m Acceptance probability is

1
P (X accepted) = — — 0 as d — oo,
o

i.e. exponential degradation of performance.
m For d =100, 0 = 1.2, we have

P (X accepted) ~ 1.2 x 1075.
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Performance of Importance Sampling

m We have

d 2
d i=1%; 1
== s 1 - T a .
w(z)=o0 exp( 5 ( 2))

m Variance of the weights:

o d/2
Vo [w(X)] = (202_1> —1

where 01/ (202 — 1) > 1 for any 0% > 1/2.

m For d =100, 0 = 1.2, we have

V, [w(X)] = 1.8 x 10%.
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Wait a minute. ..

Lecture 1:

m Simpson’s rule for approximating integrals: error in

O(n=19).

Lecture 2:

m Monte Carlo for approximating integrals: error in (’)(n’l/ 2)
with rate independent of d.

And now:

m Importance Sampling standard deviation in the Gaussian
example in exp(d)n~1/2.

The rate is indeed independent of d but the “constant” (in n)
explodes exponentially (in d).
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Markov chain Monte Carlo

m Revolutionary idea introduced by Metropolis et al., J.
Chemical Physics, 1953.

m Key idea: Given a target distribution 7, build a Markov
chain (X;),~, such that, as ¢ — oo, X; ~ 7 and

LS o) = [e@)m )i

n t=1

when n — oo e.g. almost surely.

m Central limit theorems with a rate in 1/y/n.

m In some cases the constant (in n) does not explode
exponentially with the dimension d, but polynomially.
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Side Dish: Control Variates

m Variance reduction techniques, not always applicable but
useful in some cases.

Suppose that we want to compute

I= /go(x)ﬂ(x)dx

and that we know exactly

J = /@D(az)ﬂ(ac)dx

m Sample X1,..., X, from 7 and compute
N 1 n
T =2 3 (9(X0) — NG(X0) = 7))
i=1

m What is the benefit of fn over the standard Monte Carlo
estimator?
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