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Generic Sampling Methods

For Monte Carlo methods, you need samples from
distributions.

Seen: inversion, transformation, composition, rejection.

Today: importance sampling.
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Importance Sampling

We want to compute

I = Eπ(ϕ(X)) =
∫
X
ϕ (x)π (x) dx.

We do not know how to sample from the target π but have
access to a proposal distribution of density q.

We only require that

π (x) > 0⇒ q (x) > 0;

i.e. the support of q includes the support of π.

q is called the proposal, or importance, distribution.
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Importance Sampling

We have the following identity

I = Eπ(ϕ(X)) = Eq(ϕ(X)w (X)),

where w : X→ R+ is the importance weight function

w (x) = π (x)
q (x) .

Hence for X1, . . . , Xn
i.i.d.∼ q,

ÎIS
n = 1

n

n∑
i=1

ϕ(Xi)w(Xi).

It can be interpreted as performing the following
approximation of π

π̂IS
n (dx) = 1

n

n∑
i=1

w(Xi)δXi (dx) .
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Importance Sampling Properties

SLLN: If Eq(|ϕ(X)|w (X)) <∞ then lim
n→∞

ÎIS
n = I.

Unbiased: Eq
(
ÎIS
n

)
= I.

Variance & CLT: Vq
(
ÎIS
n

)
= σ2

IS/n where

σ2
IS := Vq (ϕ(X)w (X))

and
lim
n→∞

√
n
(
ÎIS
n − I

) D→ N
(
0, σ2

IS

)
.
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Importance Sampling: Practical Advices

Consistency does not require σ2
IS <∞ but highly

recommended in practice (!).

Sufficient condition: If Eπ
(
ϕ2(X)

)
<∞ and w (x) ≤M

for all x for some M <∞, then σ2
IS <∞.

In practice ensure w (x) ≤M although it is neither
necessary nor sufficient, as seen in the following example.
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Importance Sampling: Example

π (x) = N (x; 0, 1), q (x) = N
(
x; 0, σ2).

For σ2 ≥ 1, w (x) ≤M for all x,
and for σ2 < 1, w (x)→∞ as |x| → ∞.

For ϕ (x) = x2, we have σ2
IS <∞ for all σ2 > 1/2.

For ϕ (x) = exp
(
β
2x

2
)
, we have I <∞ for β < 1

but σ2
IS =∞ for β > 1− 1

2σ2 .
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Optimal Importance Distribution

Proposition: The optimal proposal minimising Vq
(
ÎIS
n

)
is

given by
qopt (x) = |ϕ(x)|π (x)∫

X |ϕ(x)|π (x) dx.

Proof. We have indeed
Vq (ϕ(X)w (X)) = Eq

(
ϕ2(X)w2 (X)

)
− I2.

For q = qopt, we have

Eqopt

(
ϕ2(X)w2 (X)

)
=
∫
X

ϕ2(x)π2 (x)
|ϕ(x)|π (x) dx.

∫
X
|ϕ(x)|π (x) dx

=
(∫

X
|ϕ(x)|π (x) dx

)2

We also have by Jensen’s inequality for any q

Eq
(
ϕ2(X)w2 (X)

)
≥ E2

q (|ϕ(X)|w (X)) =
(∫

X
|ϕ(x)|π (x) dx

)2
.
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Optimal Importance Distribution

qopt (x) can never be used in practice!

For ϕ (x) > 0 we have qopt (x) = ϕ(x)π (x) /I and
Vqopt

(
ÎIS
n

)
= 0 but this is because

ϕ (x)w (x) = ϕ (x) π (x)
qopt (x) = I,

it requires knowing I!

This can be used as a guideline to select q; i.e. select q (x)
such that q (x) ≈ qopt (x).

Particularly interesting in rare event simulation, not quite
in statistics.
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Normalised Importance Sampling

Standard IS has limited applications in statistics as it
requires knowing π (x) and q (x) exactly.

Assume π(x) = Cπ × πu(x) and q(x) = Cq × qu(x),
π(x) > 0⇒ q(x) > 0 and and define

wu(x) = πu(x)
qu(x) .

An alternative identity is

I = Eπ(ϕ(X)) =
∫
X ϕ (x)wu (x) q(x)dx∫

Xwu(x)q(x)dx .
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Let X1, ..., Xn
i.i.d.∼ q then

ÎNIS
n =

∑n
i=1 ϕ(Xi)wu(Xi)∑n

i=1wu(Xi)

is strongly consistent through the SLLN as long as
Eq(|ϕ(X)|w (X)) <∞.
Variance of IS:

V
(
ÎIS
n

)
= 1
n

∫ (ϕ(x)π(x)− Iq(x))2

q(x) dx

while variance of NIS (using the Delta method):

V
(
ÎNIS
n

)
= 1
n

∫
π(x)2 (ϕ(x)− I)2

q(x) dx.
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Details on the Delta method

If
√
n

((
Xn

Yn

)
−
(
µx
µy

))
D−→ N

((
0
0

)
,

(
Σxx Σxy

Σyx Σyy

))
and g : (x y)T 7→ g(x, y) then

√
n

(
g

(
Xn

Yn

)
− g

(
µx
µy

))
D−→ N

((
0
0

)
,∇gT|µ

(
Σxx Σxy

Σyx Σyy

)
∇g|µ

)
.

With g : (x y)T 7→ x/y we have

∇g : (x y)T 7→
(

1
y − x

y2 ,
)T

and thus
∇g|µ =

( 1
µy
−µx

µ2
y
.
)T
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Toy Example: t-distribution

We want to compute I = Eπ(|X|) where
π (x) ∝

(
1 + x2/3

)−2 (t3-distribution).

1 Directly sample from π.
2 Use q1 (x) = gt1 (x) ∝

(
1 + x2)−1 (t1-distribution).

3 Use q2 (x) ∝ exp
(
−x2/2

)
(normal).
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Toy Example: t-distribution

π q1 q2
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Figure: Sample weights obtained for 1000 realisations of Xi, from the
different proposal distributions.
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Toy Example: t-distribution

π q1 q2

0.1

1.0

10.0

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
number of samples

estimate

Figure: Estimates În of I obtained after 1 to 1500 samples. The grey
shaded areas correpond to the range of 100 independent replications.
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Variance of importance sampling estimators

Standard Importance Sampling: X1, . . . , Xn
iid∼ q,

ÎIS
n = 1

n

n∑
i=1

ϕ(Xi)w(Xi).

Asymptotic Variance:

Vas
(
ÎIS
n

)
= Eq

[
(ϕ(X)w(X)− Eq (ϕ(X)w(X)))2

]
≈ 1
n

n∑
i=1

(
ϕ(Xi)w(Xi)− ÎIS

n

)2
.

Thus the asymptotic variance can be estimated
consistently with

1
n

n∑
i=1

(
ϕ(Xi)w(Xi)− ÎIS

n

)2
.
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Variance of importance sampling estimators

Normalised Importance Sampling: X1, . . . , Xn
iid∼ q,

ÎNIS
n =

∑n
i=1 ϕ(Xi)wu(Xi)∑n

i=1wu(Xi)
.

Asymptotic Variance:

Vas
(
ÎNIS
n

)
=

Eq
[
(ϕ(X)w(X)− I × w(X))2

]
Eq [w(X)]2

.

Thus the asymptotic variance can be estimated
consistently with

1
n

∑N
i=1wu(Xi)2

(
ϕ(Xi)− ÎNIS

n

)2

(
1
n

∑N
i=1wu(Xi)

)2 .
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Diagnostics

If only one weight, say wu(Xj), is significant compared to
the others, then

ÎNIS
n =

∑n
i=1 ϕ(Xi)wu(Xi)∑n

i=1wu(Xi)
≈ ϕ(Xj).

The “effective sample size” is one.

To how many unweighted samples correspond our weighted
samples of size n? Solve for ne in

1
n
Vas

(
ÎNIS
n

)
= σ2

ne
,

where σ2/ne corresponds to the variance of an unweighted
sample of size ne.
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Diagnostics

We solve by matching ϕ(Xi)− ÎNIS with ϕ(Xi)− I ≈ σ as
if they were i.i.d samples:

1
n

1
n

∑N
i=1wu(Xi)2

(
ϕ(Xi)− ÎNIS

n

)2

(
1
n

∑N
i=1wu(Xi)

)2 ≈ σ2

ne

i.e. 1
n

1
n

∑N
i=1wu(Xi)2(

1
n

∑N
i=1wu(Xi)

)2 = 1
ne
.

The solution is

ne = (
∑n
i=1wu(Xi))2∑n
i=1wu(Xi)2 ,

and is called the effective sample size.
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Rejection and Importance Sampling in High Dimensions

Toy example: Let X = Rd and

π (x) = 1
(2π)d/2 exp

(
−
∑d
i=1 x

2
i

2

)

and
q (x) = 1

(2πσ2)d/2 exp
(
−
∑d
i=1 x

2
i

2σ2

)
.

How do Rejection sampling and Importance sampling scale
in this context?
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Performance of Rejection Sampling

We have

w (x) = π (x)
q (x) = σd exp

(
−
∑d
i=1 x

2
i

2

(
1− 1

σ2

))
≤ σd

for σ > 1.
Acceptance probability is

P (X accepted) = 1
σd
→ 0 as d→∞,

i.e. exponential degradation of performance.
For d = 100, σ = 1.2, we have

P (X accepted) ≈ 1.2× 10−8.
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Performance of Importance Sampling

We have

w (x) = σd exp
(
−
∑d
i=1 x

2
i

2

(
1− 1

σ2

))
.

Variance of the weights:

Vq [w (X)] =
(

σ4

2σ2 − 1

)d/2

− 1

where σ4/
(
2σ2 − 1

)
> 1 for any σ2 > 1/2.

For d = 100, σ = 1.2, we have

Vq [w (X)] ≈ 1.8× 104.
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Wait a minute. . .

Lecture 1:
Simpson’s rule for approximating integrals: error in
O(n−1/d).

Lecture 2:
Monte Carlo for approximating integrals: error in O(n−1/2)
with rate independent of d.

And now:
Importance Sampling standard deviation in the Gaussian
example in exp(d)n−1/2.

The rate is indeed independent of d but the “constant” (in n)
explodes exponentially (in d).
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Markov chain Monte Carlo

Revolutionary idea introduced by Metropolis et al., J.
Chemical Physics, 1953.

Key idea: Given a target distribution π, build a Markov
chain (Xt)t≥1 such that, as t→∞, Xt ∼ π and

1
n

n∑
t=1

ϕ (Xt)→
∫
ϕ (x)π (x) dx

when n→∞ e.g. almost surely.

Central limit theorems with a rate in 1/
√
n.

In some cases the constant (in n) does not explode
exponentially with the dimension d, but polynomially.
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Side Dish: Control Variates

Variance reduction techniques, not always applicable but
useful in some cases.
Suppose that we want to compute

I =
∫
ϕ(x)π(x)dx

and that we know exactly

J =
∫
ψ(x)π(x)dx.

Sample X1, . . . , Xn from π and compute

În = 1
n

n∑
i=1

(ϕ(Xi)− λ(ψ(Xi)− J)) .

What is the benefit of În over the standard Monte Carlo
estimator?
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