Advanced Simulation - Lecture 3

Patrick Rebeschini

January 22nd, 2018

From a statistical problem to a sampling problem

- From a statistical model you get a likelihood function and a prior on the parameters.
- Applying Bayes rule, you are interested in

$$
\pi(\theta \mid \text { observations })=\frac{\mathcal{L}(\text { observations } ; \theta) p(\theta)}{\int_{\Theta} \mathcal{L}(\text { observations } ; \theta) p(\theta) d \theta}
$$

■ Inference \equiv integral w.r.t. posterior distribution.

- Integrals can be approximated by Monte Carlo.
- For Monte Carlo you need samples.
- Today: inversion, transformation, composition, rejection.

Inversion Method

- Consider a real-valued random variable X and its associated cumulative distribution function (cdf)

$$
F(x)=\mathbb{P}(X \leq x)=F(x)
$$

- The cdf $F: \mathbb{R} \rightarrow[0,1]$ is
- increasing; i.e. if $x \leq y$ then $F(x) \leq F(y)$,
- right continuous; i.e. $F(x+\varepsilon) \rightarrow F(x)$ as $\varepsilon \rightarrow 0^{+}$,
- $F(x) \rightarrow 0$ as $x \rightarrow-\infty$ and $F(x) \rightarrow 1$ as $x \rightarrow+\infty$.
- We define the generalised inverse

$$
F^{-}(u)=\inf \{x \in \mathbb{R} ; F(x) \geq u\}
$$

also known as the quantile function.

Inversion Method

Figure: Cumulative distribution function F and representation of the inverse cumulative distribution function.

Inversion Method

- Proposition. Let F be a cdf and $U \sim \mathcal{U}_{[0,1]}$. Then $X=F^{-}(U)$ has cdf F.
- In other words, to sample from a distribution with $\operatorname{cdf} F$, we can sample $U \sim \mathcal{U}_{[0,1]}$ and then return $F^{-}(U)$.
- Proof. $F^{-}(u) \leq x \Leftrightarrow u \leq F(x)$ so for $U \sim \mathcal{U}_{[0,1]}$, we have

$$
\mathbb{P}\left(F^{-}(U) \leq x\right)=\mathbb{P}(U \leq F(x))=F(x)
$$

Examples

- Exponential distribution. If $F(x)=1-e^{-\lambda x}$, then $F^{-}(u)=F^{-1}(u)=-\log (1-u) / \lambda$.

Thus when $U \sim \mathcal{U}_{[0,1]},-\log (1-U) / \lambda \sim \mathcal{E} x p(\lambda)$ and $-\log (U) / \lambda \sim \mathcal{E x p}(\lambda)$.

■ Discrete distribution. Assume X takes values $x_{1}<x_{2}<\cdots$ with probability p_{1}, p_{2}, \ldots so

$$
\begin{gathered}
F(x)=\sum_{x_{k} \leq x} p_{k} \\
F^{-}(u)=x_{k} \text { for } p_{1}+\cdots+p_{k-1}<u \leq p_{1}+\cdots+p_{k} .
\end{gathered}
$$

Transformation Method

- Let $Y \sim q$ be a \mathbb{Y}-valued random variable that we can simulate (e.g., by inversion)

■ Let $X \sim \pi$ be \mathbb{X}-valued, which we wish to simulate.

■ It may be that we can find a function $\varphi: \mathbb{Y} \rightarrow \mathbb{X}$ with the property that if we simulate $Y \sim q$ and then set $X=\varphi(Y)$ then we get $X \sim \pi$.

- Inversion is a special case of this idea.

Transformation Method

- Gamma distribution. Let $Y_{i}, i=1,2, \ldots, \alpha$, be i.i.d. with $Y_{i} \sim \mathcal{E} x p(1)$ and $X=\beta^{-1} \sum_{i=1}^{\alpha} Y_{i}$ then $X \sim \mathcal{G} a(\alpha, \beta)$.

Proof. The moment generating function of X is

$$
\mathbb{E}\left(e^{t X}\right)=\prod_{i=1}^{\alpha} \mathbb{E}\left(e^{\beta^{-1} t Y_{i}}\right)=(1-t / \beta)^{-\alpha}
$$

which is the MGF of the gamma density $\pi(x) \propto x^{\alpha-1} \exp (-\beta x)$ of parameters α, β.

- Beta distribution. See Lecture Notes.

Transformation Method - Box-Muller Algorithm

- Gaussian distribution. Let $U_{1} \sim \mathcal{U}_{[0,1]}$ and $U_{2} \sim \mathcal{U}_{[0,1]}$ be independent and set

$$
R=\sqrt{-2 \log \left(U_{1}\right)}, \vartheta=2 \pi U_{2}
$$

We have

$$
\begin{aligned}
& X=R \cos \vartheta \sim \mathcal{N}(0,1), \\
& Y=R \sin \vartheta \sim \mathcal{N}(0,1)
\end{aligned}
$$

- Indeed $R^{2} \sim \mathcal{E x p}\left(\frac{1}{2}\right)$ and $\vartheta \sim \mathcal{U}_{[0,2 \pi]}$ so

$$
q\left(r^{2}, \theta\right)=\frac{1}{2} \exp \left(-r^{2} / 2\right) \frac{1}{2 \pi} .
$$

Transformation Method - Box-Muller Algorithm

- Bijection:

$$
\begin{aligned}
& (x, y)=\left(\sqrt{r^{2}} \cos \theta, \sqrt{r^{2}} \sin \theta\right) \\
& \Leftrightarrow\left(r^{2}, \theta\right)=\left(x^{2}+y^{2}, \arctan (y / x)\right)
\end{aligned}
$$

so

$$
\pi(x, y)=q\left(r^{2}, \theta\right)\left|\operatorname{det} \frac{\partial\left(r^{2}, \theta\right)}{\partial(x, y)}\right|
$$

where

$$
\left|\operatorname{det} \frac{\partial\left(r^{2}, \theta\right)}{\partial(x, y)}\right|^{-1}=\left|\operatorname{det}\left(\begin{array}{ll}
\frac{\cos \theta}{2 r} & -r \sin \theta \\
\frac{\sin \theta}{2 r} & r \cos \theta
\end{array}\right)\right|=\frac{1}{2} .
$$

- Hence we have

$$
\pi(x, y)=\frac{1}{2 \pi} \exp \left(-\left(x^{2}+y^{2}\right) / 2\right)
$$

Transformation Method - Multivariate Normal

■ Let $Z=\left(Z_{1}, \ldots, Z_{d}\right) \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$. Let L be a real invertible $d \times d$ matrix satisfying $L L^{T}=\Sigma$, and $X=L Z+\mu$. Then $X \sim \mathcal{N}(\mu, \Sigma)$.

- We have indeed $q(z)=(2 \pi)^{-d / 2} \exp \left(-\frac{1}{2} z^{T} z\right)$ and

$$
\pi(x)=q(z)|\operatorname{det} \partial z / \partial x|
$$

where $\partial z / \partial x=L^{-1}$ and $\operatorname{det}\left(L^{-1}\right)=\operatorname{det}(\Sigma)^{-1 / 2}$. Additionally,

$$
\begin{aligned}
z^{T} z & =(x-\mu)^{T}\left(L^{-1}\right)^{T} L^{-1}(x-\mu) \\
& =(x-\mu)^{T} \Sigma^{-1}(x-\mu)
\end{aligned}
$$

- In practice, use a Cholesky factorization $\Sigma=L L^{T}$ where L is a lower triangular matrix.

Sampling via Composition

- Assume we have a joint pdf $\bar{\pi}$ with marginal π; i.e.

$$
\pi(x)=\int \bar{\pi}_{X, Y}(x, y) d y
$$

where $\bar{\pi}(x, y)$ can always be decomposed as

$$
\bar{\pi}_{X, Y}(x, y)=\bar{\pi}_{Y}(y) \bar{\pi}_{X \mid Y}(x \mid y) .
$$

- It might be easy to sample from $\bar{\pi}(x, y)$ whereas it is difficult/impossible to compute $\pi(x)$.

■ In this case, it is sufficient to sample

$$
Y \sim \bar{\pi}_{Y} \text { then } X \mid Y \sim \bar{\pi}_{X \mid Y}(\cdot \mid Y)
$$

so $(X, Y) \sim \bar{\pi}_{X, Y}$ and hence $X \sim \pi$.

Finite Mixture of Distributions

- Assume one wants to sample from

$$
\pi(x)=\sum_{i=1}^{p} \alpha_{i} . \pi_{i}(x)
$$

where $\alpha_{i}>0, \sum_{i=1}^{p} \alpha_{i}=1$ and $\pi_{i}(x) \geq 0, \int \pi_{i}(x) d x=1$.

- We can introduce $Y \in\{1, \ldots, p\}$ and

$$
\bar{\pi}_{X, Y}(x, y)=\alpha_{y} \times \pi_{y}(x)
$$

■ To sample from $\pi(x)$, first sample Y from a discrete distribution such that $\mathbb{P}(Y=k)=\alpha_{k}$ then

$$
X \mid(Y=y) \sim \pi_{y}
$$

Rejection Sampling

Basic idea: Sample from a proposal q different from the target π and correct through rejection step to obtain a sample from π.

Algorithm (Rejection Sampling). Given two densities π, q with $\pi(x) \leq M q(x)$ for all x, we can generate a sample from π by

1 Draw $X \sim q$, draw $U \sim \mathcal{U}_{[0,1]}$.
2 Accept $X=x$ as a sample from π if

$$
U \leq \frac{\pi(x)}{M q(x)}
$$

otherwise go to step 1.

Rejection Sampling

- Proposition. The distribution of the samples accepted by rejection sampling is π.

Proof. We have for any (measurable) set A

$$
\mathbb{P}(X \in A \mid X \text { accepted })=\frac{\mathbb{P}(X \in A, X \text { accepted })}{\mathbb{P}(X \text { accepted })}
$$

where

$$
\begin{aligned}
\mathbb{P}(X \in A, X \text { accepted }) & =\int_{\mathbb{X}} \int_{0}^{1} \mathbb{I}_{A}(x) \mathbb{I}\left(u \leq \frac{\pi(x)}{M q(x)}\right) q(x) d u d x \\
& =\int_{\mathbb{X}} \mathbb{I}_{A}(x) \frac{\pi(x)}{M q(x)} q(x) d x \\
& =\int_{\mathbb{X}} \mathbb{I}_{A}(x) \frac{\pi(x)}{M} d x=\frac{\pi(A)}{M} .
\end{aligned}
$$

Rejection Sampling

So

$$
\mathbb{P}(X \text { accepted })=\mathbb{P}(X \in \mathbb{X}, X \text { accepted })=\frac{\pi(\mathbb{X})}{M}=\frac{1}{M}
$$

and

$$
\mathbb{P}(X \in A \mid X \text { accepted })=\pi(A) .
$$

- Rejection sampling produces samples from π. It requires to be able to evaluate the density of π point-wise, and an upper bound M on $\pi(x) / q(x)$.

Rejection Sampling

- In most practical scenarios, we only know π and q up to some normalising constants; i.e.

$$
\pi=\widetilde{\pi} / Z_{\pi} \text { and } q=\tilde{q} / Z_{q}
$$

where $\tilde{\pi}, \tilde{q}$ are known but $Z_{\pi}=\int_{\mathbb{X}} \tilde{\pi}(x) d x, Z_{q}=\int_{\mathbb{X}} \tilde{q}(x) d x$ are unknown.
■ If Z_{π}, Z_{q} are unknown but you can upper bound:

$$
\widetilde{\pi}(x) / \widetilde{q}(x) \leq \widetilde{M}
$$

then using $\widetilde{\pi}, \widetilde{q}$ and \widetilde{M} in the algorithm is correct.

- Indeed we have

$$
\frac{\widetilde{\pi}(x)}{\widetilde{q}(x)} \leq \widetilde{M} \Leftrightarrow \frac{\pi(x)}{q(x)} \leq \widetilde{M} \frac{Z_{q}}{Z_{\pi}}=M .
$$

Rejection Sampling

- Let T denote the number of pairs (X, U) that have to be generated until X is accepted for the first time.

■ Lemma. T is geometrically distributed with parameter $1 / M$ and in particular $\mathbb{E}(T)=M$.

■ In the unnormalised case, this yields

$$
\begin{gathered}
\mathbb{P}(X \text { accepted })=\frac{1}{M}=\frac{Z_{\pi}}{\widetilde{M} Z_{q}}, \\
\mathbb{E}(T)=M=\frac{Z_{q} \widetilde{M}}{Z_{\pi}},
\end{gathered}
$$

and it can be used to provide unbiased estimates of Z_{π} / Z_{q} and Z_{q} / Z_{π}.

Examples

■ Uniform density on a bounded subset of \mathbb{R}^{p}. Consider the problem of sampling uniformly over $B \subset \mathbb{R}^{p}$, a bounded subset of \mathbb{R}^{p} :

$$
\pi(x) \propto \mathbb{I}_{B}(x)
$$

Let R be a rectangle with $B \subset R$ and

$$
q(x) \propto \mathbb{I}_{R}(x)
$$

- Then we can use $\widetilde{M}=1$ and

$$
\widetilde{\pi}(x) /\left(\widetilde{M}^{\prime} \widetilde{q}(x)\right)=\mathbb{I}_{B}(x)
$$

■ The probability of accepting a sample is then Z_{π} / Z_{q}.

Examples

- Normal density. Let $\widetilde{\pi}(x)=\exp \left(-\frac{1}{2} x^{2}\right)$ and $\widetilde{q}(x)=1 /\left(1+x^{2}\right)$. We have

$$
\frac{\tilde{\pi}(x)}{\widetilde{q}(x)}=\left(1+x^{2}\right) \exp \left(-\frac{1}{2} x^{2}\right) \leq 2 / \sqrt{e}=\widetilde{M}
$$

which is attained at ± 1. The acceptance probability is

$$
\mathbb{P}\left(U \leq \frac{\widetilde{\pi}(X)}{\widetilde{M} \widetilde{q}(X)}\right)=\frac{Z_{\pi}}{\widetilde{M} Z_{q}}=\frac{\sqrt{2 \pi}}{\frac{2}{\sqrt{e}} \pi}=\sqrt{\frac{e}{2 \pi}} \approx 0.66
$$

and the mean number of trials to success is approximately $1 / 0.66 \approx 1.52$.

Examples: Genetic linkage model

- We observe

$$
\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) \sim \mathcal{M}\left(n ; \frac{1}{2}+\frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4}\right)
$$

where \mathcal{M} is the multinomial distribution and $\theta \in(0,1)$.

- The likelihood of the observations is thus

$$
\begin{aligned}
& p\left(y_{1}, \ldots, y_{4} ; \theta\right) \\
& =\frac{n!}{y_{1}!y_{2}!y_{3}!y_{4}!}\left(\frac{1}{2}+\frac{\theta}{4}\right)^{y_{1}}\left(\frac{1}{4}(1-\theta)\right)^{y_{2}+y_{3}}\left(\frac{\theta}{4}\right)^{y_{4}} \\
& \propto(2+\theta)^{y_{1}}(1-\theta)^{y_{2}+y_{3}} \theta^{y_{4}} .
\end{aligned}
$$

- Bayesian approach where we select $p(\theta)=\mathbb{I}_{[0,1]}(\theta)$ and are interested in

$$
p\left(\theta \mid y_{1}, \ldots, y_{4}\right) \propto(2+\theta)^{y_{1}}(1-\theta)^{y_{2}+y_{3}} \theta^{y_{4}} \mathbb{I}_{[0,1]}(\theta) .
$$

Examples: Genetic linkage model

- Rejection sampling using a proposal $q(\theta)=\widetilde{q}(\theta)=p(\theta)$ to sample from $p\left(\theta \mid y_{1}, \ldots, y_{4}\right)$.

■ To use accept-reject, we need to upper bound

$$
\frac{\widetilde{\pi}(\theta)}{\widetilde{q}(\theta)}=\widetilde{\pi}(\theta)=(2+\theta)^{y_{1}}(1-\theta)^{y_{2}+y_{3}} \theta^{y_{4}}
$$

- Maximum of $\widetilde{\pi}$ can be found using standard optimization procedure to perform rejection sampling. For a realisation of $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ equal to $(69,9,11,11)$ obtained with $n=100$ and $\theta^{\star}=0.6$, results shown in following figure.

Examples: Genetic linkage model

Figure: Histogram of 10,000 samples drawn from posterior obtained by rejection sampling (left); and histogram of waiting time distribution before acceptance (right).

