Advanced Simulation - Lecture 3

Patrick Rebeschini

January 22nd, 2018

Patrick Rebeschini Lecture 3 1/ 23



From a statistical problem to a sampling problem

m From a statistical model you get a likelihood function and
a prior on the parameters.

Applying Bayes rule, you are interested in

L(observations; 8)p(0)
Jo L(observations; 0)p(6)d6

7(60 | observations) =

m Inference = integral w.r.t. posterior distribution.

Integrals can be approximated by Monte Carlo.
m For Monte Carlo you need samples.

m Today: inversion, transformation, composition, rejection.
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Inversion Method

m Consider a real-valued random variable X and its
associated cumulative distribution function (cdf)

F(z)=P(X <z)=F(z).

m The cdf F: R — [0,1] is

m increasing; i.e. if x <y then F (z) < F (y),
m right continuous; i.e. F(z+¢) — F(z) ase — 07,
m F(z) > 0asx — —o0 and F () — 1 as © — +oo.

m We define the generalised inverse
F~(u)=inf{x e R; F (z) > u}

also known as the quantile function.
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Inversion Method

Figure: Cumulative distribution function F' and representation of the
inverse cumulative distribution function.
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Inversion Method

m Proposition. Let F' be a cdf and U ~ U 1j. Then
X =F~ (U) has cdf F.

m In other words, to sample from a distribution with cdf F,
we can sample U ~ Ujg 1) and then return F=(U).

m Proof. F'~ (u) <z & u < F(x) so for U ~ Ujg ], we have

P(F~(U)<z)=P(U < F(z)) = F ().
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Examples

» Exponential distribution. If F (z) = 1 — e **, then
F~(u) =F 1 (u) = —log (1 —u)/\

Thus when U ~ Ujg 1), —log (1 = U) /A ~ Exp(N) and
—log (U) /A ~ Exp (N).

m Discrete distribution. Assume X takes values
x1 < xg < --- with probability p1,pa, ... so

F(x)= Y pr

<z

F~(u) =g for pr + -+ +pg—1 <u<pr+--+pg.
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Transformation Method

m Let Y ~ g be a Y-valued random variable that we can
simulate (e.g., by inversion)

m Let X ~ 7 be X-valued, which we wish to simulate.

m [t may be that we can find a function ¢ : Y — X with the
property that if we simulate Y ~ ¢ and then set X = ¢ (V)
then we get X ~ 7.

m Inversion is a special case of this idea.
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Transformation Method

m Gamma distribution. Let Y;, i = 1,2, ..., a, be i.i.d. with
Y; ~Exp(1) and X = 371 3%, Y; then X ~ Ga (a, B).

Proof. The moment generating function of X is
& -1
E () =TIE (") = (1 —1/8)
i=1

which is the MGF of the gamma density
7 (z) oc 2% L exp (—Bz) of parameters «, 3.

m Beta distribution. See Lecture Notes.
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Transformation Method - Box-Muller Algorithm

m Gaussian distribution. Let Uy ~ Uy 1] and Uz ~ Uy
be independent and set

R = \/—QIOg(Ul), Y = 27TU2.

We have

X = Rcos? ~ N (0,1),
Y = Rsind ~ N (0,1).

m Indeed R% ~ Exp (%) and O ~ Ujg 2] S0

q (TQ,H) = %exp (—r2/2) %
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Transformation Method - Box-Muller Algorithm

m Bijection:

(x,y) = (\/ﬁcos 0,Vr2sin 9)

& (7“2,(9) = (ac2 + 2, arctan (y/:):))

SO

d(r%,0)
= q(r%,0) |det ’
ﬂ-(x7y> (:Z(,r ) ) € (.fU,y)
where
-1
8(r2,9) B Cgie —rsind 1
det 0 (z,y) B det( sy cosf o

2r

m Hence we have

7 (z,y) = %exp (— (932 +y2> /2) .
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Transformation Method - Multivariate Normal

m Let Z = (Z1,..., Zg) """ N(0,1). Let L be a real invertible
d x d matrix satisfying L LT = %, and X = LZ + pu. Then
X~ N(p2).

m We have indeed ¢ (2) = (277)_d/2 exp( 1.7 ) and
7 (x) = q(z)|det 0z/0z]

where 0z/0x = L1 and det (L_l) = det (2)71/2'
Additionally,
T
o= (x—p)7 L_l) L™ (z —p)
=@—p)'S (@—p).

m In practice, use a Cholesky factorization ¥ = L LT where L
is a lower triangular matrix.
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Sampling via Composition

m Assume we have a joint pdf 7 with marginal 7; i.e.

m(r) = /fx,y (z,y) dy
where 7 (z,y) can always be decomposed as
mxy (z,y) =7y (Y) T x)y (z|y).

m [t might be easy to sample from 7 (z,y) whereas it is
difficult /impossible to compute 7 ().

m In this case, it is sufficient to sample

so (X,Y) ~7xy and hence X ~ .
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Finite Mixture of Distributions

m Assume one wants to sample from
P
7 (z) = Z a;.m; (x)
i=1
where a; >0, >0 o, =1 and m; (x) >0, [m (z)dx = 1.
m We can introduce Y € {1,...,p} and

Xy (2,y) = ay x my () .

m To sample from 7 (x), first sample Y from a discrete
distribution such that P (Y = k) = ay, then

X|(Y =y) ~my.
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Rejection Sampling

Basic idea: Sample from a proposal g different from the target
7 and correct through rejection step to obtain a sample from 7.

Algorithm (Rejection Sampling). Given two densities 7, ¢
with 7 (z) < M ¢ (x) for all z, we can generate a sample from 7
by

Draw X ~ ¢, draw U ~ Ujg 1-

Accept X = x as a sample from 7 if

otherwise go to step 1.
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Rejection Sampling

m Proposition. The distribution of the samples accepted by
rejection sampling is 7.

Proof. We have for any (measurable) set A

P(X € A, X accepted)

P(X € A| X accepted) = P (X accepted)

where

P(X € A, X accepted) = / / Ig(x)I (u Mg (x)) q (z) dudx
—/]IA ) q(z)dx

_ (CL’) _7(4)
—/X]IA(.%') Mda:— T
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Rejection Sampling

So
P (X accepted) =P (X € X, X accepted) = WV =

and

P(X € A| X accepted) =7 (A).

m Rejection sampling produces samples from 7. It requires to
be able to evaluate the density of 7 point-wise, and an
upper bound M on 7(x)/q(x).
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Rejection Sampling

m In most practical scenarios, we only know 7 and ¢ up to

some normalising constants; i.e.
7 =7/Zr and q = G/Z,

where 7, G are known but Z; = [ 7 (z) dz, Z; = [x G (x)dx

are unknown.
m If Z,, Z, are unknown but you can upper bound:

m(z)/q(z) < M,
then using 7, ¢ and M in the algorithm is correct.

m Indeed we have
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Rejection Sampling

m Let 7" denote the number of pairs (X, U) that have to be
generated until X is accepted for the first time.

m Lemma. T is geometrically distributed with parameter
1/M and in particular E (T") = M.

m In the unnormalised case, this yields

1 Zr
P (X accepted) = — = ——,
( )= =T
Z,M
E(T)=M=-}
() e
and it can be used to provide unbiased estimates of Z./Z,
and Z,/Z.
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Examples

m Uniform density on a bounded subset of RP.
Consider the problem of sampling uniformly over B C RP?,
a bounded subset of RP:
7 (z) xIp(x).
Let R be a rectangle with B C R and

q(z) o< Ip(z).
m Then we can use M = 1 and

7(2)/ (MG (@) =15 ().

m The probability of accepting a sample is then Z/Z,.
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Examples

m Normal density. Let 7 (z) = exp (—%ﬁ) and
q(x) =1/ (1 +2?). We have

7 (z) = (1 +x2) exp (—;$2> <2/\e=M

which is attained at +1. The acceptance probability is

T (X - V2
plo< 2 ) Zn _v2m_ [ 6,
Mq(X) MZ, Vel 2w
and the mean number of trials to success is approximately
1/0.66 ~ 1.52.
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Examples: Genetic linkage model

m We observe

1 6 1 1 0
(m,n,n,wrvM(n )

;54'1,1(1—9)71(1—9)31

where M is the multinomial distribution and 6 € (0,1).
m The likelihood of the observations is thus

P (Y15 Y23 0)
! 1 ONYL /1 Y2+Y3 0\ Y4
st 3+ 3 (G0 ()
yilyolyslya! \2 - 4 1 4
o (24 g)yl (1-— 9)y2+y3 QY4

m Bayesian approach where we select p () = Ijo1; (#) and are
interested in

P (0] y1, -y ya) o< (24 6)1 (1 — 0)¥27¥ 094115 4 (6) .
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Examples: Genetic linkage model

m Rejection sampling using a proposal ¢ (#) = q(0) =p () to
sample from p (0| y1, ..., y4)-

m To use accept-reject, we need to upper bound

0
(0)

~—

=

=7(0)=(2+0)" (1- 9)y2+y3 QY4

=

m Maximum of 7 can be found using standard optimization
procedure to perform rejection sampling. For a realisation
of (Y1,Y2,Y3,Yy) equal to (69,9,11,11) obtained with
n = 100 and 6* = 0.6, results shown in following figure.
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Exampl

density density 0.10-
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Figure: Histogram of 10,000 samples drawn from posterior obtained
by rejection sampling (left); and histogram of waiting time
distribution before acceptance (right).
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