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From a statistical problem to a sampling problem

From a statistical model you get a likelihood function and
a prior on the parameters.

Applying Bayes rule, you are interested in

π(θ | observations) = L(observations; θ)p(θ)∫
Θ L(observations; θ)p(θ)dθ .

Inference ≡ integral w.r.t. posterior distribution.

Integrals can be approximated by Monte Carlo.

For Monte Carlo you need samples.

Today: inversion, transformation, composition, rejection.
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Inversion Method

Consider a real-valued random variable X and its
associated cumulative distribution function (cdf)

F (x) = P (X ≤ x) = F (x) .

The cdf F : R→ [0, 1] is
increasing; i.e. if x ≤ y then F (x) ≤ F (y),
right continuous; i.e. F (x+ ε)→ F (x) as ε→ 0+,
F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→ +∞.

We define the generalised inverse

F− (u) = inf {x ∈ R;F (x) ≥ u}

also known as the quantile function.
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Inversion Method
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Figure: Cumulative distribution function F and representation of the
inverse cumulative distribution function.
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Inversion Method

Proposition. Let F be a cdf and U ∼ U[0,1]. Then
X = F− (U) has cdf F .

In other words, to sample from a distribution with cdf F ,
we can sample U ∼ U[0,1] and then return F−(U).

Proof. F− (u) ≤ x⇔ u ≤ F (x) so for U ∼ U[0,1], we have

P
(
F− (U) ≤ x

)
= P (U ≤ F (x)) = F (x) .
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Examples

Exponential distribution. If F (x) = 1− e−λx, then
F− (u) = F−1 (u) = − log (1− u) /λ.

Thus when U ∼ U[0,1], − log (1− U) /λ ∼ Exp (λ) and
− log (U) /λ ∼ Exp (λ).

Discrete distribution. Assume X takes values
x1 < x2 < · · · with probability p1, p2, ... so

F (x) =
∑
xk≤x

pk,

F− (u) = xk for p1 + · · ·+ pk−1 < u ≤ p1 + · · ·+ pk.
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Transformation Method

Let Y ∼ q be a Y-valued random variable that we can
simulate (e.g., by inversion)

Let X ∼ π be X-valued, which we wish to simulate.

It may be that we can find a function ϕ : Y→ X with the
property that if we simulate Y ∼ q and then set X = ϕ (Y )
then we get X ∼ π.

Inversion is a special case of this idea.
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Transformation Method

Gamma distribution. Let Yi, i = 1, 2, ..., α, be i.i.d. with
Yi ∼ Exp (1) and X = β−1∑α

i=1 Yi then X ∼ Ga (α, β).

Proof. The moment generating function of X is

E
(
etX

)
=

α∏
i=1

E
(
eβ

−1tYi

)
= (1− t/β)−α

which is the MGF of the gamma density
π (x) ∝ xα−1 exp (−βx) of parameters α, β.

Beta distribution. See Lecture Notes.
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Transformation Method - Box-Muller Algorithm

Gaussian distribution. Let U1 ∼ U[0,1] and U2 ∼ U[0,1]
be independent and set

R =
√
−2 log (U1), ϑ = 2πU2.

We have

X = R cosϑ ∼ N (0, 1) ,
Y = R sinϑ ∼ N (0, 1) .

Indeed R2 ∼ Exp
(

1
2

)
and ϑ ∼ U[0,2π] so

q
(
r2, θ

)
= 1

2 exp
(
−r2/2

) 1
2π .
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Transformation Method - Box-Muller Algorithm

Bijection:

(x, y) =
(√

r2 cos θ,
√
r2 sin θ

)
⇔
(
r2, θ

)
=
(
x2 + y2, arctan (y/x)

)
so

π (x, y) = q
(
r2, θ

) ∣∣∣∣∣det ∂
(
r2, θ

)
∂ (x, y)

∣∣∣∣∣
where∣∣∣∣∣det ∂

(
r2, θ

)
∂ (x, y)

∣∣∣∣∣
−1

=
∣∣∣∣∣det

(
cos θ
2r −r sin θ

sin θ
2r r cos θ

)∣∣∣∣∣ = 1
2 .

Hence we have

π (x, y) = 1
2π exp

(
−
(
x2 + y2

)
/2
)
.

Patrick Rebeschini Lecture 3 10/ 23



Transformation Method - Multivariate Normal

Let Z = (Z1, ..., Zd)
i.i.d.∼ N (0, 1). Let L be a real invertible

d× d matrix satisfying L LT = Σ, and X = LZ + µ. Then
X ∼ N (µ,Σ) .
We have indeed q (z) = (2π)−d/2 exp

(
−1

2z
T z
)

and

π (x) = q (z) |det ∂z/∂x|

where ∂z/∂x = L−1 and det
(
L−1) = det (Σ)−1/2.

Additionally,

zT z = (x− µ)T
(
L−1

)T
L−1 (x− µ)

= (x− µ)T Σ−1 (x− µ) .

In practice, use a Cholesky factorization Σ = L LT where L
is a lower triangular matrix.
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Sampling via Composition

Assume we have a joint pdf π with marginal π; i.e.

π (x) =
∫
πX,Y (x, y) dy

where π (x, y) can always be decomposed as

πX,Y (x, y) = πY (y)πX|Y (x| y) .

It might be easy to sample from π (x, y) whereas it is
difficult/impossible to compute π (x) .

In this case, it is sufficient to sample

Y ∼ πY then X|Y ∼ πX|Y ( ·|Y )

so (X,Y ) ∼ πX,Y and hence X ∼ π.
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Finite Mixture of Distributions

Assume one wants to sample from

π (x) =
p∑
i=1

αi.πi (x)

where αi > 0,
∑p
i=1 αi = 1 and πi (x) ≥ 0,

∫
πi (x) dx = 1.

We can introduce Y ∈ {1, ..., p} and

πX,Y (x, y) = αy × πy (x) .

To sample from π (x), first sample Y from a discrete
distribution such that P (Y = k) = αk then

X| (Y = y) ∼ πy.
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Rejection Sampling

Basic idea: Sample from a proposal q different from the target
π and correct through rejection step to obtain a sample from π.

Algorithm (Rejection Sampling). Given two densities π, q
with π (x) ≤M q (x) for all x, we can generate a sample from π
by

1 Draw X ∼ q, draw U ∼ U[0,1].

2 Accept X = x as a sample from π if

U ≤ π (x)
M q (x) ,

otherwise go to step 1.
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Rejection Sampling

Proposition. The distribution of the samples accepted by
rejection sampling is π.

Proof. We have for any (measurable) set A

P (X ∈ A|X accepted) = P (X ∈ A,X accepted)
P (X accepted)

where

P (X ∈ A,X accepted) =
∫
X

∫ 1

0
IA (x) I

(
u ≤ π (x)

M q (x)

)
q (x) dudx

=
∫
X
IA (x) π (x)

M q (x)q (x) dx

=
∫
X
IA (x) π (x)

M
dx = π (A)

M
.
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Rejection Sampling

So

P (X accepted) = P (X ∈ X, X accepted) = π (X)
M

= 1
M

and

P (X ∈ A|X accepted) = π (A) .

Rejection sampling produces samples from π. It requires to
be able to evaluate the density of π point-wise, and an
upper bound M on π(x)/q(x).
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Rejection Sampling

In most practical scenarios, we only know π and q up to
some normalising constants; i.e.

π = π̃/Zπ and q = q̃/Zq

where π̃, q̃ are known but Zπ =
∫
X π̃ (x) dx, Zq =

∫
X q̃ (x) dx

are unknown.
If Zπ, Zq are unknown but you can upper bound:

π̃ (x) /q̃ (x) ≤ M̃,

then using π̃, q̃ and M̃ in the algorithm is correct.
Indeed we have

π̃ (x)
q̃ (x) ≤ M̃ ⇔

π (x)
q (x) ≤ M̃

Zq
Zπ

= M.
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Rejection Sampling

Let T denote the number of pairs (X,U) that have to be
generated until X is accepted for the first time.

Lemma. T is geometrically distributed with parameter
1/M and in particular E (T ) = M.

In the unnormalised case, this yields

P (X accepted) = 1
M

= Zπ

M̃Zq
,

E (T ) = M = ZqM̃

Zπ
,

and it can be used to provide unbiased estimates of Zπ/Zq
and Zq/Zπ.
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Examples

Uniform density on a bounded subset of Rp.
Consider the problem of sampling uniformly over B ⊂ Rp,
a bounded subset of Rp:

π (x) ∝ IB (x) .

Let R be a rectangle with B ⊂ R and

q (x) ∝ IR (x) .

Then we can use M̃ = 1 and

π̃ (x) /
(
M̃ ′q̃ (x)

)
= IB (x) .

The probability of accepting a sample is then Zπ/Zq.
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Examples

Normal density. Let π̃ (x) = exp
(
−1

2x
2
)

and
q̃ (x) = 1/

(
1 + x2). We have

π̃ (x)
q̃ (x) =

(
1 + x2

)
exp

(
−1

2x
2
)
≤ 2/

√
e = M̃

which is attained at ±1. The acceptance probability is

P
(
U ≤ π̃ (X)

M̃ q̃ (X)

)
= Zπ

M̃Zq
=
√

2π
2√
e
π

=
√

e

2π ≈ 0.66,

and the mean number of trials to success is approximately
1/0.66 ≈ 1.52.
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Examples: Genetic linkage model

We observe

(Y1, Y2, Y3, Y4) ∼M
(
n; 1

2 + θ

4 ,
1
4 (1− θ) , 1

4 (1− θ) , θ4

)
where M is the multinomial distribution and θ ∈ (0, 1) .
The likelihood of the observations is thus

p (y1, ..., y4; θ)

= n!
y1!y2!y3!y4!

(1
2 + θ

4

)y1 (1
4 (1− θ)

)y2+y3 (θ
4

)y4

∝ (2 + θ)y1 (1− θ)y2+y3 θy4 .

Bayesian approach where we select p (θ) = I[0,1] (θ) and are
interested in

p (θ| y1, ..., y4) ∝ (2 + θ)y1 (1− θ)y2+y3 θy4I[0,1] (θ) .
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Examples: Genetic linkage model

Rejection sampling using a proposal q (θ) = q̃ (θ) = p (θ) to
sample from p (θ| y1, ..., y4).

To use accept-reject, we need to upper bound

π̃ (θ)
q̃ (θ) = π̃ (θ) = (2 + θ)y1 (1− θ)y2+y3 θy4

Maximum of π̃ can be found using standard optimization
procedure to perform rejection sampling. For a realisation
of (Y1, Y2, Y3, Y4) equal to (69, 9, 11, 11) obtained with
n = 100 and θ? = 0.6, results shown in following figure.
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Examples: Genetic linkage model
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Figure: Histogram of 10,000 samples drawn from posterior obtained
by rejection sampling (left); and histogram of waiting time
distribution before acceptance (right).
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