Advanced Simulation - Lecture 2

Patrick Rebeschini

January 17th, 2018

Outline

- Monte Carlo methods rely on random numbers to approximate integrals.
- Bayesian statistics in particular yields many intractable integrals.
- In this lecture we'll see some statistical problems involving integrals, and discuss the properties of the basic Monte Carlo estimator.

Bayesian Inference: Gaussian Data

- Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be i.i.d. random variables with $Y_{i} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$ with σ^{2} known and θ unknown.
- Assign a prior distribution on the parameter: $\vartheta \sim \mathcal{N}\left(\mu, \kappa^{2}\right)$, then one can check that

$$
p(\theta \mid y)=\mathcal{N}\left(\theta ; \nu, \omega^{2}\right)
$$

where

$$
\omega^{2}=\frac{\kappa^{2} \sigma^{2}}{n \kappa^{2}+\sigma^{2}}, \nu=\frac{\sigma^{2}}{n \kappa^{2}+\sigma^{2}} \mu+\frac{n \kappa^{2}}{n \kappa^{2}+\sigma^{2}} \bar{y}
$$

- Thus $\mathbb{E}(\vartheta \mid y)=\nu$ and $\mathbb{V}(\vartheta \mid y)=\omega^{2}$.

Bayesian Inference: Gaussian Data

■ If $C:=\left(\nu-\Phi^{-1}(1-\alpha / 2) \omega, \nu+\Phi^{-1}(1-\alpha / 2) \omega\right)$, then

$$
\mathbb{P}(\vartheta \in C \mid y)=1-\alpha
$$

- If $Y_{n+1} \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$ then
$p\left(y_{n+1} \mid y\right)=\int_{\Theta} p\left(y_{n+1} \mid \theta\right) p(\theta \mid y) d \theta=\mathcal{N}\left(y_{n+1} ; \nu, \omega^{2}+\sigma^{2}\right)$.
- No need to do Monte Carlo approximations: the prior is conjugate for the model.

Bayesian Inference: Logistic Regression

■ Let $\left(x_{i}, Y_{i}\right) \in \mathbb{R}^{d} \times\{0,1\}$ where $x_{i} \in \mathbb{R}^{d}$ is a covariate and

$$
\mathbb{P}\left(Y_{i}=1 \mid \theta\right)=\frac{1}{1+e^{-\theta^{T} x_{i}}}
$$

- Assign a prior $p(\theta)$ on ϑ. Then Bayesian inference relies on

$$
p\left(\theta \mid y_{1}, \ldots, y_{n}\right)=\frac{p(\theta) \prod_{i=1}^{n} \mathbb{P}\left(Y_{i}=y_{i} \mid \theta\right)}{\mathbb{P}\left(y_{1}, \ldots, y_{n}\right)}
$$

- If the prior is Gaussian, the posterior is not a standard distribution: $\mathbb{P}\left(y_{1}, \ldots, y_{n}\right)$ cannot be computed.

S\&P 500 index

Figure: S\&P 500 daily price index $\left(p_{t}\right)$ between 1984 and 1991 .

S\&P 500 index

Figure: Daily returns $y_{t}=\log \left(p_{t} / p_{t-1}\right)$ between 1984 and 1991.

Bayesian Inference: Stochastic Volatility Model

- Latent stochastic volatility $\left(X_{t}\right)_{t \geq 1}$ of an asset is modeled through

$$
X_{t}=\varphi X_{t-1}+\sigma V_{t}, Y_{t}=\beta \exp \left(X_{t}\right) W_{t}
$$

where $V_{t}, W_{t} \sim \mathcal{N}(0,1)$.

- Intuitively, log-returns are modeled as centered Gaussians with dependent variances.
- Popular alternative to ARCH and GARCH models (Engle, 2003 Nobel Prize).
- Estimate the parameters (φ, σ, β) given the observations.

■ Estimate X_{t} given Y_{1}, \ldots, Y_{t} on-line based on $p\left(x_{t} \mid y_{1}, \ldots, y_{t}\right)$.

- No analytical solution available!

Monte Carlo Integration

- We are interested in computing

$$
I=\int_{\mathbb{X}} \varphi(x) \pi(x) d x
$$

where π is a pdf on \mathbb{X} and $\varphi: \mathbb{X} \rightarrow \mathbb{R}$.

- Monte Carlo method:
- sample n independent copies X_{1}, \ldots, X_{n} of $X \sim \pi$,
- compute

$$
\hat{I}_{n}=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(X_{i}\right)
$$

- Remark: You can think of it as having the following empirical measure approximation of $\pi(d x)$

$$
\widehat{\pi}_{n}(d x)=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}(d x)
$$

where $\delta_{X_{i}}(d x)$ is the Dirac measure at X_{i}.

Monte Carlo Integration: Limit Theorems

- Proposition (LLN): Assume $\mathbb{E}(|\varphi(X)|)<\infty$ then \widehat{I}_{n} is a strongly consistent estimator of I.

■ Proposition (CLT): Assume I and

$$
\sigma^{2}=\mathbb{V}(\varphi(X))=\int_{\mathbb{X}}[\varphi(x)-I]^{2} \pi(x) d x
$$

are finite then (see computation in previous lecture)

$$
\mathbb{E}\left(\left(\widehat{I}_{n}-I\right)^{2}\right)=\mathbb{V}\left(\widehat{I}_{n}\right)=\frac{\sigma^{2}}{n}
$$

and

$$
\frac{\sqrt{n}}{\sigma}\left(\widehat{I}_{n}-I\right) \xrightarrow{\mathrm{D}} \mathcal{N}(0,1) .
$$

Monte Carlo Integration: Variance Estimation

- Proposition: Assume $\sigma^{2}=\mathbb{V}(\varphi(X))$ exists then

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\varphi\left(X_{i}\right)-\widehat{I}_{n}\right)^{2}
$$

is an unbiased sample variance estimator of σ^{2}.

- Proof: let $Y_{i}=\varphi\left(X_{i}\right)$ then we have

$$
\begin{aligned}
\mathbb{E}\left(S_{n}^{2}\right) & =\frac{1}{n-1} \sum_{i=1}^{n} \mathbb{E}\left(\left(Y_{i}-\bar{Y}\right)^{2}\right) \\
& =\frac{1}{n-1} \mathbb{E}\left(\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2}\right) \\
& =\frac{1}{n-1}\left(n\left(\mathbb{V}(Y)+I^{2}\right)-n\left(\mathbb{V}(\bar{Y})+I^{2}\right)\right) \\
& =\mathbb{V}(Y)=\mathbb{V}(\varphi(X))
\end{aligned}
$$

Monte Carlo Integration: Error Estimates

- Chebyshev's inequality yields the bound

$$
\mathbb{P}\left(\left|\widehat{I}_{n}-I\right|>c \frac{\sigma}{\sqrt{n}}\right) \leq \frac{\mathbb{V}\left(\widehat{I}_{n}\right)}{c^{2} \sigma^{2} / n}=\frac{1}{c^{2}}
$$

- An estimate follows from the CLT for large n

$$
\frac{\sqrt{n}}{\sigma}\left(\widehat{I}_{n}-I\right) \approx Z \sim \mathcal{N}(0,1)
$$

so that

$$
\mathbb{P}\left(\left|\widehat{I}_{n}-I\right|>c \frac{\sigma}{\sqrt{n}}\right) \approx 2(1-\Phi(c))
$$

- Hence by choosing $c=c_{\alpha}$ s.t. $2\left(1-\Phi\left(c_{\alpha}\right)\right)=\alpha$, an approximate $(1-\alpha) 100 \%$-CI for I is

$$
\left(\widehat{I}_{n} \pm c_{\alpha} \frac{\sigma}{\sqrt{n}}\right) \approx\left(\widehat{I}_{n} \pm c_{\alpha} \frac{S_{n}}{\sqrt{n}}\right)
$$

and the rate is in $1 / \sqrt{n}$ whatever \mathbb{X}.

Toy Example

■ Consider the case where we have a square say $\mathcal{S} \subseteq \mathbb{R}^{2}$, the sides being of length 2 , with inscribed disk \mathcal{D} of radius 1 .

- We want to compute through Monte Carlo the area I of \mathcal{D}.

$$
\begin{aligned}
I & =\pi=\iint_{\mathcal{D}} d x_{1} d x_{2} \\
& =\iint_{\mathcal{S}} \mathbb{I}_{\mathcal{D}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \text { as } \mathcal{D} \subset \mathcal{S} \\
& =4 \iint_{\mathbb{R}^{2}} \mathbb{I}_{\mathcal{D}}\left(x_{1}, x_{2}\right) \pi\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

where $\mathcal{S}:=[-1,1] \times[-1,1]$ and

$$
\pi\left(x_{1}, x_{2}\right)=\frac{1}{4} \mathbb{I}_{\mathcal{S}}\left(x_{1}, x_{2}\right)
$$

is the uniform density on the square \mathcal{S}.

Toy Example

Figure: $\widehat{I}_{n}=4 \frac{n_{\mathcal{D}}}{n}$ where $n_{\mathcal{D}}$ is the number of samples which fell within the disk.

Toy Example

Figure: Relative error of \widehat{I}_{n} against the number of samples.

Drawing random numbers

- Computing intricate high-dimensional integrals boils down to generating random variables from complicated distributions.
- How does a computer simulate random variables?
- In R, the command runif (100) returns 100 realizations of a uniform random variable in $(0,1)$.

■ Strictly speaking, these are only "pseudo-random numbers".

Drawing random numbers

- Henceforth, we will assume that we have access to a sequence of independent random variables $\left(U_{i}, i \geq 1\right)$ that are uniformly distributed on $[0,1]$.
- To simulate from $\pi\left(x_{1}, x_{2}\right)=\frac{1}{4} \mathbb{I}_{\mathcal{S}}\left(x_{1}, x_{2}\right)$, we draw U_{1} and U_{2} uniformly and define $X_{1}=2 U_{1}-1, X_{2}=2 U_{2}-1$. Then the point $\left(X_{1}, X_{2}\right)$ is distributed uniformly within \mathcal{S}.

■ In the following lectures we will see various methods to simulate probability distributions.

Galton's machine to draw normal samples

Patrick Rebeschini
Lecture 2

