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m Monte Carlo methods rely on random numbers to
approximate integrals.

m Bayesian statistics in particular yields many intractable
integrals.

m In this lecture we’ll see some statistical problems involving
integrals, and discuss the properties of the basic Monte
Carlo estimator.
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Bayesian Inference: Gaussian Data

m Let Y = (Y7,...,Y,) be i.i.d. random variables with
Y; ~ N (6,0?) with 02 known and ¢ unknown.

m Assign a prior distribution on the parameter:
¥ ~ N (p1, k%), then one can check that

p(6y) =N (057,07

where

9 K202 o? nrk?

= UV = + 7_
nk2 + o2’ nn2+02u nm2+02y

m Thus E (J|y) = v and V (J|y) = w?.
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Bayesian Inference: Gaussian Data

nlfC=@v-2'(1-a/2)wrv+®!(1-a/2)w), then

P(WelCly)=1-a.

mIf Y11 ~N(0,07) then

p(yn+1|y)=/@p(ynHI@)p(@\y)d@ZN(ynH;v,wZJraQ)-

m No need to do Monte Carlo approximations: the prior is
conjugate for the model.
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Bayesian Inference: Logistic Regression

m Let (z;,Y;) € R% x {0,1} where z; € R? is a covariate and

1

P(Yizlw):m

m Assign a prior p () on . Then Bayesian inference relies on

p(0) IT P(Yi =yl 0)

=

(3

P (yla ey yn>

p (9| Yty eeey yn) =

m If the prior is Gaussian, the posterior is not a standard
distribution: P (yi, ..., y,) cannot be computed.
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Figure: S&P 500 daily price index (p;) between 1984 and 1991.
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S&P 500 index
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Figure: Daily returns y; = log(p:/p:—1) between 1984 and 1991.
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Bayesian Inference: Stochastic Volatility Model

Latent stochastic volatility (X;),~, of an asset is modeled
through

X=X 1+ 0V, Yy = Bexp (Xy) Wy

where V;, Wy ~ N (0,1).
m Intuitively, log-returns are modeled as centered Gaussians
with dependent variances.

m Popular alternative to ARCH and GARCH models (Engle,
2003 Nobel Prize).

m Estimate the parameters (¢, 0, 3) given the observations.
m Estimate X; given Y7, ..., Y; on-line based on

p(xe| Y1,y Yt) -
m No analytical solution available!
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Monte Carlo Integration

m We are interested in computing

I:/Xgo(x)w(a:)dx

where 7 is a pdf on X and ¢ : X — R.
m Monte Carlo method:
m sample n independent copies X1,...,X,, of X ~ m,
m compute

m Remark: You can think of it as having the following
empirical measure approximation of 7 (dx)

n

% (da) = % S 6y, (dr)

i=1

where 0x, (dz) is the Dirac measure at X;.
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Monte Carlo Integration: Limit Theorems

m Proposition (LLN): Assume E (|¢ (X)|) < oo then T, is a
strongly consistent estimator of I.

m Proposition (CLT): Assume I and

are finite then (see computation in previous lecture)

B ((L-1)) =v (@) =2

and

v

(L. - 1) 3 N (0,1).
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Monte Carlo Integration: Variance Estimation

m Proposition: Assume 02 = V (¢ (X)) exists then

is an unbiased sample variance estimator of o2.
m Proof: let ¥; = ¢ (X;) then we have

B(s2) - niéx@((nyf)
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Monte Carlo Integration: Error Estimates

m Chebyshev’s inequality yields the bound

- v (7,
P (‘In ~1] > c;ﬁ> < 6252/2 = Ciz

m An estimate follows from the CLT for large n

@(fn—l)%ZNN(O,l),

2

so that
o

\/ﬁ) ~2(1—®(c).

m Hence by choosing ¢ = ¢, s.t. 2(1 — ®(¢y)) = @, an
approximate (1 — «) 100%-CI for I is

~ o - Sh
Intceco— )~ |InEtco—F—
(e \/ﬁ) (e ﬁ)
and the rate is in 1/y/n whatever X.
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Toy Example

m Consider the case where we have a square say S CR?, the
sides being of length 2, with inscribed disk D of radius 1.

m We want to compute through Monte Carlo the area I of D.
I:ﬂ:// dridxo
D
= // Ip (z1,x2) dx1dre as D C S
S
= 4/ / Ip (z1, z2) 7 (21, 22) dridz
RQ
where § :=[—1,1] x [-1,1] and
1
T (21, 22) = 1S (z1,22)

is the uniform density on the square S.
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Figure: f,L = 472 where np is the number of samples which fell
within the disk.
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Toy Example
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Figure: Relative error of I, against the number of samples.
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Drawing random numbers

Computing intricate high-dimensional integrals boils down
to generating random variables from complicated
distributions.

m How does a computer simulate random variables?

In R, the command runif (100) returns 100 realizations of
a uniform random variable in (0, 1).

Strictly speaking, these are only “pseudo-random numbers”.
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Drawing random numbers

m Henceforth, we will assume that we have access to a
sequence of independent random variables (U;,7 > 1) that
are uniformly distributed on [0, 1].

m To simulate from 7 (z1,22) = 1Ls (21, 22), we draw U; and
Us uniformly and define X; =2U; — 1, Xo = 2Us — 1.
Then the point (X1, X2) is distributed uniformly within S.

m In the following lectures we will see various methods to
simulate probability distributions.
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Galton’s machine to draw normal samples
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