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Outline

Monte Carlo methods rely on random numbers to
approximate integrals.

Bayesian statistics in particular yields many intractable
integrals.

In this lecture we’ll see some statistical problems involving
integrals, and discuss the properties of the basic Monte
Carlo estimator.
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Bayesian Inference: Gaussian Data

Let Y = (Y1, ..., Yn) be i.i.d. random variables with
Yi ∼ N

(
θ, σ2) with σ2 known and θ unknown.

Assign a prior distribution on the parameter:
ϑ ∼ N

(
µ, κ2), then one can check that

p (θ| y) = N
(
θ; ν, ω2

)
where

ω2 = κ2σ2

nκ2 + σ2 , ν = σ2

nκ2 + σ2µ+ nκ2

nκ2 + σ2 y.

Thus E (ϑ|y) = ν and V (ϑ|y) = ω2.
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Bayesian Inference: Gaussian Data

If C :=
(
ν − Φ−1 (1− α/2)ω, ν + Φ−1 (1− α/2)ω

)
, then

P (ϑ ∈ C| y) = 1− α.

If Yn+1 ∼ N
(
θ, σ2) then

p (yn+1| y) =
∫

Θ
p (yn+1| θ) p (θ| y) dθ = N

(
yn+1; ν, ω2 + σ2

)
.

No need to do Monte Carlo approximations: the prior is
conjugate for the model.
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Bayesian Inference: Logistic Regression

Let (xi, Yi) ∈ Rd × {0, 1} where xi ∈ Rd is a covariate and

P (Yi = 1| θ) = 1
1 + e−θT xi

Assign a prior p (θ) on ϑ. Then Bayesian inference relies on

p (θ| y1, ..., yn) =
p (θ)

n∏
i=1

P (Yi = yi| θ)

P (y1, ..., yn)

If the prior is Gaussian, the posterior is not a standard
distribution: P (y1, ..., yn) cannot be computed.
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Figure: S&P 500 daily price index (pt) between 1984 and 1991.
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S&P 500 index
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Figure: Daily returns yt = log(pt/pt−1) between 1984 and 1991.
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Bayesian Inference: Stochastic Volatility Model

Latent stochastic volatility (Xt)t≥1 of an asset is modeled
through

Xt = ϕXt−1 + σVt, Yt = β exp (Xt)Wt

where Vt,Wt ∼ N (0, 1) .
Intuitively, log-returns are modeled as centered Gaussians
with dependent variances.
Popular alternative to ARCH and GARCH models (Engle,
2003 Nobel Prize).
Estimate the parameters (ϕ, σ, β) given the observations.
Estimate Xt given Y1, ..., Yt on-line based on
p (xt| y1, ..., yt) .
No analytical solution available!
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Monte Carlo Integration

We are interested in computing

I =
∫
X
ϕ (x)π (x) dx

where π is a pdf on X and ϕ : X→ R.
Monte Carlo method:

sample n independent copies X1, . . . , Xn of X ∼ π,
compute

În = 1
n

n∑
i=1

ϕ(Xi).

Remark: You can think of it as having the following
empirical measure approximation of π (dx)

π̂n (dx) = 1
n

n∑
i=1

δXi (dx)

where δXi (dx) is the Dirac measure at Xi.
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Monte Carlo Integration: Limit Theorems

Proposition (LLN): Assume E (|ϕ (X)|) <∞ then În is a
strongly consistent estimator of I.

Proposition (CLT): Assume I and

σ2 = V (ϕ (X)) =
∫
X

[ϕ (x)− I]2 π (x) dx

are finite then (see computation in previous lecture)

E
((
În − I

)2
)

= V
(
În
)

= σ2

n

and √
n

σ

(
În − I

) D→ N (0, 1) .
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Monte Carlo Integration: Variance Estimation

Proposition: Assume σ2 = V (ϕ (X)) exists then

S2
n = 1

n− 1

n∑
i=1

(
ϕ (Xi)− În

)2

is an unbiased sample variance estimator of σ2.
Proof : let Yi = ϕ (Xi) then we have

E
(
S2
n

)
= 1

n− 1

n∑
i=1

E
((
Yi − Y

)2
)

= 1
n− 1E

(
n∑
i=1

Y 2
i − nY

2
)

= 1
n− 1

(
n
(
V (Y ) + I2

)
− n

(
V
(
Y
)

+ I2
))

= V (Y ) = V (ϕ (X)) .
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Monte Carlo Integration: Error Estimates

Chebyshev’s inequality yields the bound

P
(∣∣∣În − I∣∣∣ > c

σ√
n

)
≤

V
(
În
)

c2σ2/n
= 1
c2 .

An estimate follows from the CLT for large n
√
n

σ

(
În − I

)
≈ Z ∼ N (0, 1) ,

so that
P
(∣∣∣În − I∣∣∣ > c

σ√
n

)
≈ 2 (1− Φ (c)) .

Hence by choosing c = cα s.t. 2 (1− Φ (cα)) = α, an
approximate (1− α) 100%-CI for I is(

În ± cα
σ√
n

)
≈
(
În ± cα

Sn√
n

)
and the rate is in 1/

√
n whatever X.
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Toy Example

Consider the case where we have a square say S ⊆R2, the
sides being of length 2, with inscribed disk D of radius 1.
We want to compute through Monte Carlo the area I of D.

I = π =
∫ ∫

D
dx1dx2

=
∫ ∫

S
ID (x1, x2) dx1dx2 as D ⊂ S

= 4
∫ ∫

R2
ID (x1, x2)π (x1, x2) dx1dx2

where S := [−1, 1]× [−1, 1] and

π (x1, x2) = 1
4IS (x1, x2)

is the uniform density on the square S.
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Toy Example

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
X

Y

inside ● ●FALSE TRUE

Figure: În = 4 nD
n where nD is the number of samples which fell

within the disk.
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Toy Example
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Figure: Relative error of În against the number of samples.
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Drawing random numbers

Computing intricate high-dimensional integrals boils down
to generating random variables from complicated
distributions.

How does a computer simulate random variables?

In R, the command runif(100) returns 100 realizations of
a uniform random variable in (0, 1).

Strictly speaking, these are only “pseudo-random numbers”.

Patrick Rebeschini Lecture 2 16/ 18



Drawing random numbers

Henceforth, we will assume that we have access to a
sequence of independent random variables (Ui, i ≥ 1) that
are uniformly distributed on [0, 1].

To simulate from π (x1, x2) = 1
4IS (x1, x2), we draw U1 and

U2 uniformly and define X1 = 2U1 − 1, X2 = 2U2 − 1.
Then the point (X1, X2) is distributed uniformly within S.

In the following lectures we will see various methods to
simulate probability distributions.
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Galton’s machine to draw normal samples
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