### Advanced Simulation - Lecture 2

#### Patrick Rebeschini

January 17th, 2018

 Monte Carlo methods rely on random numbers to approximate integrals.

 Bayesian statistics in particular yields many intractable integrals.

• In this lecture we'll see some statistical problems involving integrals, and discuss the properties of the basic Monte Carlo estimator.

#### Bayesian Inference: Gaussian Data

- Let  $Y = (Y_1, ..., Y_n)$  be i.i.d. random variables with  $Y_i \sim \mathcal{N}(\theta, \sigma^2)$  with  $\sigma^2$  known and  $\theta$  unknown.
- Assign a prior distribution on the parameter:  $\vartheta \sim \mathcal{N}(\mu, \kappa^2)$ , then one can check that

$$p(\theta|y) = \mathcal{N}(\theta; \nu, \omega^2)$$

where

$$\omega^2 = \frac{\kappa^2 \sigma^2}{n\kappa^2 + \sigma^2}, \ \nu = \frac{\sigma^2}{n\kappa^2 + \sigma^2} \mu + \frac{n\kappa^2}{n\kappa^2 + \sigma^2} \overline{y}.$$

• Thus  $\mathbb{E}(\vartheta|y) = \nu$  and  $\mathbb{V}(\vartheta|y) = \omega^2$ .

• If 
$$C := (\nu - \Phi^{-1} (1 - \alpha/2) \omega, \nu + \Phi^{-1} (1 - \alpha/2) \omega)$$
, then  

$$\mathbb{P}(\vartheta \in C | y) = 1 - \alpha.$$

• If 
$$Y_{n+1} \sim \mathcal{N}(\theta, \sigma^2)$$
 then  
 $p(y_{n+1}|y) = \int_{\Theta} p(y_{n+1}|\theta) p(\theta|y) d\theta = \mathcal{N}(y_{n+1}; \nu, \omega^2 + \sigma^2).$ 

■ No need to do Monte Carlo approximations: the prior is conjugate for the model.

#### Bayesian Inference: Logistic Regression

• Let  $(x_i, Y_i) \in \mathbb{R}^d \times \{0, 1\}$  where  $x_i \in \mathbb{R}^d$  is a covariate and  $\mathbb{P}(Y_i = 1 | \theta) = \frac{1}{1 + e^{-\theta^T x_i}}$ 

• Assign a prior  $p(\theta)$  on  $\vartheta$ . Then Bayesian inference relies on

$$p\left(\theta | y_{1},...,y_{n}\right) = \frac{p\left(\theta\right)\prod_{i=1}^{n} \mathbb{P}\left(Y_{i} = y_{i} | \theta\right)}{\mathbb{P}\left(y_{1},...,y_{n}\right)}$$

• If the prior is Gaussian, the posterior is not a standard distribution:  $\mathbb{P}(y_1, ..., y_n)$  cannot be computed.



Figure: S&P 500 daily price index  $(p_t)$  between 1984 and 1991.



Figure: Daily returns  $y_t = \log(p_t/p_{t-1})$  between 1984 and 1991.

## Bayesian Inference: Stochastic Volatility Model

■ Latent stochastic volatility  $(X_t)_{t \ge 1}$  of an asset is modeled through

$$X_t = \varphi X_{t-1} + \sigma V_t, \ Y_t = \beta \exp(X_t) W_t$$

where  $V_t, W_t \sim \mathcal{N}(0, 1)$ .

- Intuitively, log-returns are modeled as centered Gaussians with dependent variances.
- Popular alternative to ARCH and GARCH models (Engle, 2003 Nobel Prize).
- Estimate the parameters  $(\varphi, \sigma, \beta)$  given the observations.
- Estimate  $X_t$  given  $Y_1, ..., Y_t$  on-line based on  $p(x_t | y_1, ..., y_t)$ .
- No analytical solution available!

## Monte Carlo Integration

 $\blacksquare$  We are interested in computing

$$I = \int_{\mathbb{X}} \varphi(x) \,\pi(x) \,dx$$

where  $\pi$  is a pdf on  $\mathbb{X}$  and  $\varphi : \mathbb{X} \to \mathbb{R}$ .

- Monte Carlo method:
  - sample *n* independent copies  $X_1, \ldots, X_n$  of  $X \sim \pi$ ,
  - compute

$$\hat{I}_n = \frac{1}{n} \sum_{i=1}^n \varphi(X_i).$$

**Remark**: You can think of it as having the following empirical measure approximation of  $\pi(dx)$ 

$$\widehat{\pi}_{n}\left(dx\right) = \frac{1}{n}\sum_{i=1}^{n}\delta_{X_{i}}\left(dx\right)$$

where  $\delta_{X_i}(dx)$  is the Dirac measure at  $X_i$ .

#### Monte Carlo Integration: Limit Theorems

- **Proposition (LLN)**: Assume  $\mathbb{E}(|\varphi(X)|) < \infty$  then  $\widehat{I}_n$  is a strongly consistent estimator of I.
- **Proposition (CLT)**: Assume *I* and

$$\sigma^{2} = \mathbb{V}(\varphi(X)) = \int_{\mathbb{X}} [\varphi(x) - I]^{2} \pi(x) dx$$

are finite then (see computation in previous lecture)

$$\mathbb{E}\left(\left(\widehat{I}_n - I\right)^2\right) = \mathbb{V}\left(\widehat{I}_n\right) = \frac{\sigma^2}{n}$$

and

$$\frac{\sqrt{n}}{\sigma} \left( \widehat{I}_n - I \right) \stackrel{\mathrm{D}}{\to} \mathcal{N} \left( 0, 1 \right).$$

#### Monte Carlo Integration: Variance Estimation

**Proposition**: Assume  $\sigma^2 = \mathbb{V}(\varphi(X))$  exists then

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(\varphi\left(X_i\right) - \widehat{I}_n\right)^2$$

is an unbiased sample variance estimator of  $\sigma^2$ . **Proof**: let  $Y_i = \varphi(X_i)$  then we have

$$\mathbb{E}\left(S_{n}^{2}\right) = \frac{1}{n-1}\sum_{i=1}^{n}\mathbb{E}\left(\left(Y_{i}-\overline{Y}\right)^{2}\right)$$
$$= \frac{1}{n-1}\mathbb{E}\left(\sum_{i=1}^{n}Y_{i}^{2}-n\overline{Y}^{2}\right)$$
$$= \frac{1}{n-1}\left(n\left(\mathbb{V}\left(Y\right)+I^{2}\right)-n\left(\mathbb{V}\left(\overline{Y}\right)+I^{2}\right)\right)$$
$$= \mathbb{V}\left(Y\right) = \mathbb{V}\left(\varphi\left(X\right)\right).$$

## Monte Carlo Integration: Error Estimates

• Chebyshev's inequality yields the bound

$$\mathbb{P}\left(\left|\widehat{I}_n - I\right| > c\frac{\sigma}{\sqrt{n}}\right) \le \frac{\mathbb{V}\left(\widehat{I}_n\right)}{c^2\sigma^2/n} = \frac{1}{c^2}.$$

 $\blacksquare$  An estimate follows from the CLT for large n

$$\frac{\sqrt{n}}{\sigma}\left(\widehat{I}_{n}-I\right)\approx Z\sim\mathcal{N}\left(0,1\right),$$

so that

$$\mathbb{P}\left(\left|\widehat{I}_{n}-I\right|>c\frac{\sigma}{\sqrt{n}}\right)\approx 2\left(1-\Phi\left(c\right)\right).$$

■ Hence by choosing  $c = c_{\alpha}$  s.t.  $2(1 - \Phi(c_{\alpha})) = \alpha$ , an approximate  $(1 - \alpha) 100\%$ -CI for *I* is

$$\left(\widehat{I}_n \pm c_\alpha \frac{\sigma}{\sqrt{n}}\right) \approx \left(\widehat{I}_n \pm c_\alpha \frac{S_n}{\sqrt{n}}\right)$$

and the rate is in  $1/\sqrt{n}$  whatever X.

# Toy Example

- Consider the case where we have a square say  $S \subseteq \mathbb{R}^2$ , the sides being of length 2, with inscribed disk  $\mathcal{D}$  of radius 1.
- We want to compute through Monte Carlo the area I of  $\mathcal{D}$ .

$$I = \pi = \int \int_{\mathcal{D}} dx_1 dx_2$$
  
=  $\int \int_{\mathcal{S}} \mathbb{I}_{\mathcal{D}} (x_1, x_2) dx_1 dx_2 \text{ as } \mathcal{D} \subset \mathcal{S}$   
=  $4 \int \int_{\mathbb{R}^2} \mathbb{I}_{\mathcal{D}} (x_1, x_2) \pi (x_1, x_2) dx_1 dx_2$ 

where  $\mathcal{S} := [-1, 1] \times [-1, 1]$  and

$$\pi\left(x_{1}, x_{2}\right) = \frac{1}{4} \mathbb{I}_{\mathcal{S}}\left(x_{1}, x_{2}\right)$$

is the uniform density on the square  $\mathcal{S}$ .



Figure:  $\hat{I}_n = 4 \frac{n_D}{n}$  where  $n_D$  is the number of samples which fell within the disk.



Figure: Relative error of  $\widehat{I}_n$  against the number of samples.

- Computing intricate high-dimensional integrals boils down to generating random variables from complicated distributions.
- How does a computer simulate random variables?
- In R, the command runif(100) returns 100 realizations of a uniform random variable in (0, 1).
- Strictly speaking, these are only "pseudo-random numbers".

- Henceforth, we will assume that we have access to a sequence of independent random variables  $(U_i, i \ge 1)$  that are uniformly distributed on [0, 1].
- To simulate from  $\pi(x_1, x_2) = \frac{1}{4} \mathbb{I}_{\mathcal{S}}(x_1, x_2)$ , we draw  $U_1$  and  $U_2$  uniformly and define  $X_1 = 2U_1 1$ ,  $X_2 = 2U_2 1$ . Then the point  $(X_1, X_2)$  is distributed uniformly within  $\mathcal{S}$ .
- In the following lectures we will see various methods to simulate probability distributions.

### Galton's machine to draw normal samples

