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m Particle methods for static problems.

m Evidence estimation.

m The End!
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Sequence of posterior distributions

m Consider the problem of estimating

/cp(x)ﬂ(x)d:c
for test function ¢ : X — R and target distribution 7 on X.

m Introduce intermediate distributions
T, T1y--.,TT

such that:

m 7 is easy to sample from,
m m; and 71 are not too different,

BT = T.
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Sequence of posterior distributions

m Introduce the partial posterior m(0) o< p(0)p(y1:+ | 6).

Case where 7(0) o p(0)p(y1.7 | 0).

m We have m(6) = p(0), the prior distribution.

m We have 77 (0) = 7(0) = p(0 | y1.7), the full posterior
distribution.

m We can expect m;(f) to be similar to my11(f), at least when
t is large, when the data is i.i.d.
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Sequence of posterior distributions

m Introduce a simple parametric distribution q.

General target distribution m(x).

m We can introduce
mi(a) o () q(a) "

where 0 =y <1 <...<~vr =1

Then 7y = ¢ and 7 = 7.

If 7, is close to 7y.+1, then m; is close to my41.
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Sequential Importance Sampling: algorithm

m At timet =0

m Sample X* ~ m(-) fori € {1,...,N}.
m Compute the weights

< 1
vie{l,...,N b= —.
i€f bowp N
m At timet > 1
m Compute the weights
wi = wp_y X w,
: Wt(Xi)
=wi_ | X —————.
t—1 Wt—l(Xl)

At all times, (wi, X*)Y, approximates ;.
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Sequential Importance Sampling: diagnostics

m As already seen for IS, we can compute the effective sample
size )
(2 wi) 1
ESS; = N N = 3
( im1(w}) ) i-1 (W)

m BSS; = N if W} = N~ for all i.

m If there exists i such that W} ~ 1, and for j # 1, Wt] ~ 0,
then ESS; ~ 1.

m As a rule of thumb, the higher the ESS the better our
approximation.
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Toy model

m Data y; ~ N (i, 1), 1000 points generated with pu* = 2.

Prior u ~ N(0,1)

Sequence of partial posterior (1) o< p() [1heq p(ys | 11)-

m Incremental weights:

[“&) o plye | 1)

m We can look at the evolution of the effective sample size
with .
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Figure: Effective sample size against “time”, using sequential
importance sampling.
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Sequential Importance Sampling with Resampling

m At timet =0

m Sample X} ~ mo(+) fori e {1,...,N}.
m Compute the weights

: 1
m At timet > 1 ‘
m Resample (wi_, X} 1) — (N_l,ﬂfl).
m Define X} = X} ;.
m Compute the weights
_m(X})
me—1(X7)

Problem: there are less and less unique values in (X})N ;.
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Figure: Effective sample size against “time”, using sequential
importance sampling with resampling.
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Figure: Number of unique values against “time”, using sequential
importance sampling with resampling.
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Move steps

m Consider particles (N1, X})¥ | approximating 7.

m The ESS is maximum (=N), but multiple values within
(X)X, are identical.

m How to diversify the particles while still approximating ;7

Apply a Markov kernel K; to each X}:

Vie{l,...,N} X}~ KX}, dx)

m Can we find K; such that (N1, X7) still approximates m;?

e.g.
| N
N;@(Xt)m p(x)my(x)de
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Move steps

m Assume that K; leaves m; invariant:

/ﬂ't(l’)Kt(:E, y)dr = m(y).
m If X} ~ 7y, then X} ~ Ky (X!, dy) also follows ;.
m Also, if X ~ ¢ and w(z) = 7(x)/q(x), such that
Eq[w(X)o(X)] = Ex[p(X)]
then, for X ~ K(X,dz),

Eqr [w(X)p(X)] = Ex[p(X)].
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Move steps

Result: if (w?, X?) approximates 7, then we can apply a
m-invariant kernel to each X* and not change the weights.

m Draw X’ ~ K (X%, dx) for all i € {1,...,N}.
m Keep the weights unchanged.

m (w', X?) still approximates 7.
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Sequential Monte Carlo Sampler: algorithm

m At timet =0
m Sample X{ ~ mo(+) fori € {1,...,N}.
m Compute the weights

1

Vie{l,...,N b=
ie{l,...,N} wj N

m At timet > 1 A
m Resample (wi_, X} 1) — (N_layifl)'
m Draw
th ~ Kt—l()_(z—17 dIL‘)

m Compute the weights

At all times, (wi, X})X, approximates ;.
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Adaptive resampling

Problem: if K; is a Metropolis-Hastings with invariant
distribution 7y, computational cost typically linear in t.

Thus applying K; at each step ¢t € {1,...,T} yields an
overall cost in

> 0(t) =0(T?)

t=1

We can save time by performing the resample-move step
only when necessary.

Use the Effective Sample Size to know whether to trigger a
resample-move step.
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Sequential Monte Carlo Sampler: algorithm

m At timet =10
m Sample X{ ~ mo(+) fori € {1,...,N}.
m Compute the weights
: 1
Vie{l,...,N 0= —
ie{l,...,N} wj N
m At timet > 1 .
m If ESS < N, then:
m Resample (wj_, X{ ) — (N‘I,Yi,l).

m Draw _ o
X{ ~ Ki—1(X{_1,dx).

m Compute the weights

At all times, (wi, X})X, approximates ;.
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Figure: Effective sample size against “time”, using sequential Monte
Carlo sampling. Dashed lines indicate resampling times.
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Figure: Number of unique values against “time”, using sequential

Monte Carlo sampling. Dashed lines indicate resampling times.
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15+

Figure: Posterior approximation (in black), and true posterior (in
red), after 1000 observations.
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Evidence estimation

m Assume (wi, X})Y, approximates the posterior distribution
7 (0) < p(0)p(y1.¢ | 0) at time t.

m Then the following estimator

SN wi p(ye | X7)
Y w

converges to

/p(ytH | 6)m:(0)db
ot 0000110,

p(y1:t)

p(yﬂ/p(yl 411 | )p(0)dO = p(yis1 | yiot).

m Similar to the likelihood estimator in particle filters.
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Toy model

m We compare the SMC estimator with the estimator
obtained by importance sampling from the prior
distribution:

Vie{l,...,N} X'~ p(9),
Vie{l,... N} Li = p(yre | XY,

N (1) ZLZ

m We plot the following relative error

AN 1PN (y1:t) — p(y1:)]
N -

P(y1:)|
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Figure: Relative error using SMC samplers and importance sampling
from the prior; 10 independent experiments.
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The End

Inversion, Transformation, Composition, Accept-reject,
Importance Sampling, Metropolis—Hastings, Gibbs sampling,
Adaptive Multiple Importance Sampling, Reversible Jump,
Slice Sampling, Sequential Importance Sampling, Particle filter,
Pseudo-marginal Metropolis—Hastings, Sequential Monte Carlo
Sampler. ..

What about Nested Sampling, Path Sampling, Hamiltonian
MCMC, Pinball Sampler, Sequential Quasi-Monte Carlo,
Multiple- Try Metropolis—Hastings, Coupling From the Past,
Multilevel Splitting, Wang—Landau algorithm, Free Energy
MCMC, Stochastic Gradient Langevin Dynamics, Firefly
MCMC, Configurational Bias Monte Carlo...?

Good luck for the exams!
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