Advanced Simulation - Lecture 16

Patrick Rebeschini

March 7th, 2018

Patrick Rebeschini Lect

Particle methods for static problems.

• Evidence estimation.

■ The End!

Sequence of posterior distributions

Consider the problem of estimating

$$\int \varphi(x) \pi(x) dx$$

for test function $\varphi : \mathbb{X} \to \mathbb{R}$ and target distribution π on \mathbb{X} .

■ Introduce intermediate distributions

 $\pi_0, \pi_1, \ldots, \pi_T$

such that:

- π_0 is easy to sample from,
- π_t and π_{t+1} are not too different,

•
$$\pi_T = \pi$$
.

Sequence of posterior distributions

• Case where
$$\pi(\theta) \propto p(\theta)p(y_{1:T} \mid \theta)$$
.

- Introduce the partial posterior $\pi_t(\theta) \propto p(\theta)p(y_{1:t} \mid \theta)$.
- We have $\pi_0(\theta) = p(\theta)$, the prior distribution.
- We have $\pi_T(\theta) = \pi(\theta) = p(\theta \mid y_{1:T})$, the full posterior distribution.
- We can expect $\pi_t(\theta)$ to be similar to $\pi_{t+1}(\theta)$, at least when t is large, when the data is i.i.d.

Sequence of posterior distributions

- General target distribution $\pi(x)$.
- Introduce a simple parametric distribution q.
- We can introduce

$$\pi_t(x) \propto \pi(x)^{\gamma_t} q(x)^{1-\gamma_t}$$

where $0 = \gamma_0 < \gamma_1 < ... < \gamma_T = 1$.

- Then $\pi_0 = q$ and $\pi_T = \pi$.
- If γ_t is close to γ_{t+1} , then π_t is close to π_{t+1} .

Sequential Importance Sampling: algorithm

• At time t = 0

- Sample $X^i \sim \pi_0(\cdot)$ for $i \in \{1, \ldots, N\}$.
- Compute the weights

$$\forall i \in \{1, \dots, N\} \quad w_0^i = \frac{1}{N}.$$

- At time $t \ge 1$
 - Compute the weights

$$\begin{split} w_t^i &= w_{t-1}^i \times \omega_t^i \\ &= w_{t-1}^i \times \frac{\pi_t(X^i)}{\pi_{t-1}(X^i)}. \end{split}$$

At all times, $(w_t^i, X^i)_{i=1}^N$ approximates π_t .

Sequential Importance Sampling: diagnostics

• As already seen for IS, we can compute the effective sample size

$$\text{ESS}_{t} = \frac{\left(\sum_{i=1}^{N} w_{t}^{i}\right)^{2}}{\left(\sum_{i=1}^{N} (w_{t}^{i})^{2}\right)} = \frac{1}{\sum_{i=1}^{n} (W_{t}^{i})^{2}}.$$

•
$$\operatorname{ESS}_t = N$$
 if $W_t^i = N^{-1}$ for all i .

- If there exists *i* such that $W_t^i \approx 1$, and for $j \neq i$, $W_t^j \approx 0$, then $\text{ESS}_t \approx 1$.
- As a rule of thumb, the higher the ESS the better our approximation.

Toy model

- Data $y_t \sim \mathcal{N}(\mu, 1)$, 1000 points generated with $\mu^* = 2$.
- Prior $\mu \sim \mathcal{N}(0, 1)$
- Sequence of partial posterior $\pi_t(\mu) \propto p(\mu) \prod_{s=1}^t p(y_s \mid \mu)$.
- Incremental weights:

$$\frac{\pi_t(\mu)}{\pi_{t-1}(\mu)} \propto p(y_t \mid \mu)$$

• We can look at the evolution of the effective sample size with *t*.

Figure: Effective sample size against "time", using sequential importance sampling.

Sequential Importance Sampling with Resampling

• At time t = 0

- Sample $X_0^i \sim \pi_0(\cdot)$ for $i \in \{1, \ldots, N\}$.
- Compute the weights

$$\forall i \in \{1, \dots, N\} \quad w_0^i = \frac{1}{N}.$$

• At time $t \ge 1$

- Resample $(w_{t-1}^i, X_{t-1}^i) \to (N^{-1}, \overline{X}_{t-1}^i).$
- Define $X_t^i = \bar{X}_{t-1}^i$.
- Compute the weights

$$w_t^i = \omega_t^i = \frac{\pi_t(X_t^i)}{\pi_{t-1}(X_t^i)}.$$

Problem: there are less and less unique values in $(X_t^i)_{i=1}^N$.

Figure: Effective sample size against "time", using sequential importance sampling with resampling.

Figure: Number of unique values against "time", using sequential importance sampling with resampling.

- Consider particles $(N^{-1}, \bar{X}_t^i)_{i=1}^N$, approximating π_t .
- The ESS is maximum (=N), but multiple values within $(\bar{X}_t^i)_{i=1}^N$ are identical.
- How to diversify the particles while still approximating π_t ?
- Apply a Markov kernel K_t to each \bar{X}_t^i :

$$\forall i \in \{1, \dots, N\} \quad X_t^i \sim K_t(\bar{X}_t^i, dx)$$

• Can we find K_t such that (N^{-1}, X_t^i) still approximates π_t ? e.g.

$$\frac{1}{N}\sum_{i=1}^{N}\varphi(X_t^i)\xrightarrow[N\to\infty]{a.s.}\int\varphi(x)\pi_t(x)dx.$$

• Assume that K_t leaves π_t invariant:

$$\int \pi_t(x) K_t(x, y) dx = \pi_t(y).$$

• If $\bar{X}_t^i \sim \pi_t$, then $X_t^i \sim K_t(\bar{X}_t^i, dy)$ also follows π_t .

• Also, if $\bar{X} \sim q$ and $w(x) = \pi(x)/q(x)$, such that $\mathbb{E}_q[w(\bar{X})\varphi(\bar{X})] = \mathbb{E}_{\pi}[\varphi(X)]$

then, for $X \sim K(\overline{X}, dx)$,

$$\mathbb{E}_{qK}[w(\bar{X})\varphi(X)] = \mathbb{E}_{\pi}[\varphi(X)].$$

Result: if (w^i, \bar{X}^i) approximates π , then we can apply a π -invariant kernel to each \bar{X}^i and not change the weights.

• Draw $X^i \sim K(\bar{X}^i, dx)$ for all $i \in \{1, \dots, N\}$.

• Keep the weights unchanged.

• (w^i, X^i) still approximates π .

Sequential Monte Carlo Sampler: algorithm

• At time t = 0

- Sample $X_0^i \sim \pi_0(\cdot)$ for $i \in \{1, \ldots, N\}$.
- Compute the weights

$$\forall i \in \{1, \dots, N\} \quad w_0^i = \frac{1}{N}.$$

■ At time
$$t \ge 1$$

■ Resample $(w_{t-1}^i, X_{t-1}^i) \to (N^{-1}, \overline{X}_{t-1}^i)$.
■ Draw

$$X_t^i \sim K_{t-1}(\bar{X}_{t-1}^i, dx).$$

Compute the weights

$$w_t^i = \omega_t^i = \frac{\pi_t(X_t^i)}{\pi_{t-1}(X_t^i)}.$$

At all times, $(w_t^i, X_t^i)_{i=1}^N$ approximates π_t .

Adaptive resampling

- Problem: if K_t is a Metropolis-Hastings with invariant distribution π_t , computational cost typically linear in t.
- Thus applying K_t at each step $t \in \{1, \ldots, T\}$ yields an overall cost in

$$\sum_{t=1}^{T} \mathcal{O}(t) = \mathcal{O}(T^2)$$

- We can save time by performing the resample-move step only when necessary.
- Use the Effective Sample Size to know whether to trigger a resample-move step.

Sequential Monte Carlo Sampler: algorithm

- At time t = 0
 - Sample $X_0^i \sim \pi_0(\cdot)$ for $i \in \{1, \dots, N\}$.
 - Compute the weights

$$\forall i \in \{1, \dots, N\} \quad w_0^i = \frac{1}{N}$$

• At time
$$t \ge 1$$

• If ESS $< \tilde{N}$, then:
• Resample $(w_{t-1}^i, X_{t-1}^i) \rightarrow (N^{-1}, \overline{X}_{t-1}^i)$
• Draw
 $X_t^i \sim K_{t-1}(\overline{X}_{t-1}^i, dx)$

Compute the weights

$$w_t^i = w_{t-1}^i \times \frac{\pi_t(X_t^i)}{\pi_{t-1}(X_t^i)}$$

At all times, $(w_t^i, X_t^i)_{i=1}^N$ approximates π_t .

Figure: Effective sample size against "time", using sequential Monte Carlo sampling. Dashed lines indicate resampling times.

Figure: Number of unique values against "time", using sequential Monte Carlo sampling. Dashed lines indicate resampling times.

Figure: Posterior approximation (in black), and true posterior (in red), after 1000 observations.

Evidence estimation

- Assume $(w_t^i, X_t^i)_{i=1}^N$ approximates the posterior distribution $\pi_t(\theta) \propto p(\theta)p(y_{1:t} \mid \theta)$ at time t.
- Then the following estimator

$$\frac{\sum_{i=1}^{N} w_t^i \, p(y_{t+1} \mid X_t^i)}{\sum_{i=1}^{N} w_t^i}$$

converges to

$$\int p(y_{t+1} \mid \theta) \pi_t(\theta) d\theta$$

= $\int p(y_{t+1} \mid \theta) \frac{p(\theta)p(y_{1:t} \mid \theta)}{p(y_{1:t})} d\theta$
= $\frac{1}{p(y_{1:t})} \int p(y_{1:t+1} \mid \theta)p(\theta) d\theta = p(y_{t+1} \mid y_{1:t}).$

• Similar to the likelihood estimator in particle filters.

• We compare the SMC estimator with the estimator obtained by importance sampling from the prior distribution:

$$\forall i \in \{1, \dots, N\} \quad X^i \sim p(\theta),$$

$$\forall i \in \{1, \dots, N\} \quad L^i_t = p(y_{1:t} \mid X^i),$$

$$p^N(y_{1:t}) = \frac{1}{N} \sum_{i=1}^N L^i_t.$$

• We plot the following relative error

$$r_t^N = \frac{|p^N(y_{1:t}) - p(y_{1:t})|}{|p(y_{1:t})|}.$$

Figure: Relative error using SMC samplers and importance sampling from the prior; 10 independent experiments.

Inversion, Transformation, Composition, Accept-reject, Importance Sampling, Metropolis–Hastings, Gibbs sampling, Adaptive Multiple Importance Sampling, Reversible Jump, Slice Sampling, Sequential Importance Sampling, Particle filter, Pseudo-marginal Metropolis–Hastings, Sequential Monte Carlo Sampler...

What about Nested Sampling, Path Sampling, Hamiltonian MCMC, Pinball Sampler, Sequential Quasi-Monte Carlo, Multiple-Try Metropolis-Hastings, Coupling From the Past, Multilevel Splitting, Wang-Landau algorithm, Free Energy MCMC, Stochastic Gradient Langevin Dynamics, Firefly MCMC, Configurational Bias Monte Carlo...?

Good luck for the exams!