
Advanced Simulation - Lecture 16

Patrick Rebeschini

March 7th, 2018

Patrick Rebeschini Lecture 16 1/ 25



Outline

Particle methods for static problems.

Evidence estimation.

The End!
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Sequence of posterior distributions

Consider the problem of estimating∫
ϕ(x)π(x)dx

for test function ϕ : X→ R and target distribution π on X.

Introduce intermediate distributions

π0, π1, . . . , πT

such that:
π0 is easy to sample from,
πt and πt+1 are not too different,
πT = π.
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Sequence of posterior distributions

Case where π(θ) ∝ p(θ)p(y1:T | θ).

Introduce the partial posterior πt(θ) ∝ p(θ)p(y1:t | θ).

We have π0(θ) = p(θ), the prior distribution.

We have πT (θ) = π(θ) = p(θ | y1:T ), the full posterior
distribution.

We can expect πt(θ) to be similar to πt+1(θ), at least when
t is large, when the data is i.i.d.
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Sequence of posterior distributions

General target distribution π(x).

Introduce a simple parametric distribution q.

We can introduce

πt(x) ∝ π(x)γtq(x)1−γt

where 0 = γ0 < γ1 < . . . < γT = 1.

Then π0 = q and πT = π.

If γt is close to γt+1, then πt is close to πt+1.
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Sequential Importance Sampling: algorithm

At time t = 0
Sample Xi ∼ π0(·) for i ∈ {1, . . . , N}.
Compute the weights

∀i ∈ {1, . . . , N} wi0 = 1
N
.

At time t ≥ 1
Compute the weights

wit = wit−1 × ωit

= wit−1 ×
πt(Xi)
πt−1(Xi) .

At all times, (wit, Xi)Ni=1 approximates πt.
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Sequential Importance Sampling: diagnostics

As already seen for IS, we can compute the effective sample
size

ESSt =

(∑N
i=1w

i
t

)2(∑N
i=1(wit)2

) = 1∑n
i=1

(
W i
t

)2 .

ESSt = N if W i
t = N−1 for all i.

If there exists i such that W i
t ≈ 1, and for j 6= i, W j

t ≈ 0,
then ESSt ≈ 1.

As a rule of thumb, the higher the ESS the better our
approximation.
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Toy model

Data yt ∼ N (µ, 1), 1000 points generated with µ? = 2.

Prior µ ∼ N (0, 1)

Sequence of partial posterior πt(µ) ∝ p(µ)
∏t
s=1 p(ys | µ).

Incremental weights:

πt(µ)
πt−1(µ) ∝ p(yt | µ)

We can look at the evolution of the effective sample size
with t.
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Toy model
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Figure: Effective sample size against “time”, using sequential
importance sampling.
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Sequential Importance Sampling with Resampling

At time t = 0
Sample Xi

0 ∼ π0(·) for i ∈ {1, . . . , N}.
Compute the weights

∀i ∈ {1, . . . , N} wi0 = 1
N
.

At time t ≥ 1
Resample

(
wit−1, X

i
t−1
)
→
(
N−1, X

i
t−1

)
.

Define Xi
t = X̄i

t−1.
Compute the weights

wit = ωit = πt(Xi
t)

πt−1(Xi
t)
.

Problem: there are less and less unique values in (Xi
t)Ni=1.
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Toy model
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Figure: Effective sample size against “time”, using sequential
importance sampling with resampling.
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Toy model
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Figure: Number of unique values against “time”, using sequential
importance sampling with resampling.
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Move steps

Consider particles (N−1, X̄i
t)Ni=1, approximating πt.

The ESS is maximum (=N), but multiple values within
(X̄i

t)Ni=1 are identical.

How to diversify the particles while still approximating πt?

Apply a Markov kernel Kt to each X̄i
t :

∀i ∈ {1, . . . , N} Xi
t ∼ Kt(X̄i

t , dx)

Can we find Kt such that (N−1, Xi
t) still approximates πt?

e.g.
1
N

N∑
i=1

ϕ(Xi
t)

a.s.−−−−→
N→∞

∫
ϕ(x)πt(x)dx.
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Move steps

Assume that Kt leaves πt invariant:∫
πt(x)Kt(x, y)dx = πt(y).

If X̄i
t ∼ πt, then Xi

t ∼ Kt(X̄i
t , dy) also follows πt.

Also, if X̄ ∼ q and w(x) = π(x)/q(x), such that

Eq[w(X̄)ϕ(X̄)] = Eπ[ϕ(X)]

then, for X ∼ K(X̄, dx),

EqK [w(X̄)ϕ(X)] = Eπ[ϕ(X)].
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Move steps

Result: if (wi, X̄i) approximates π, then we can apply a
π-invariant kernel to each X̄i and not change the weights.

Draw Xi ∼ K(X̄i, dx) for all i ∈ {1, . . . , N}.

Keep the weights unchanged.

(wi, Xi) still approximates π.
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Sequential Monte Carlo Sampler: algorithm

At time t = 0
Sample Xi

0 ∼ π0(·) for i ∈ {1, . . . , N}.
Compute the weights

∀i ∈ {1, . . . , N} wi0 = 1
N
.

At time t ≥ 1
Resample

(
wit−1, X

i
t−1
)
→
(
N−1, X

i
t−1

)
.

Draw
Xi
t ∼ Kt−1(X̄i

t−1, dx).

Compute the weights

wit = ωit = πt(Xi
t)

πt−1(Xi
t)
.

At all times, (wit, Xi
t)Ni=1 approximates πt.
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Adaptive resampling

Problem: if Kt is a Metropolis-Hastings with invariant
distribution πt, computational cost typically linear in t.

Thus applying Kt at each step t ∈ {1, . . . , T} yields an
overall cost in

T∑
t=1
O(t) = O(T 2)

We can save time by performing the resample-move step
only when necessary.

Use the Effective Sample Size to know whether to trigger a
resample-move step.
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Sequential Monte Carlo Sampler: algorithm

At time t = 0
Sample Xi

0 ∼ π0(·) for i ∈ {1, . . . , N}.
Compute the weights

∀i ∈ {1, . . . , N} wi0 = 1
N

At time t ≥ 1
If ESS < Ñ , then:

Resample
(
wi

t−1, Xi
t−1
)
→
(

N−1, X
i
t−1

)
.

Draw
Xi

t ∼ Kt−1(X̄i
t−1, dx).

Compute the weights

wit = wit−1 ×
πt(Xi

t)
πt−1(Xi

t)
.

At all times, (wit, Xi
t)Ni=1 approximates πt.
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Toy model
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Figure: Effective sample size against “time”, using sequential Monte
Carlo sampling. Dashed lines indicate resampling times.
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Toy model
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Figure: Number of unique values against “time”, using sequential
Monte Carlo sampling. Dashed lines indicate resampling times.
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Toy model
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Figure: Posterior approximation (in black), and true posterior (in
red), after 1000 observations.
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Evidence estimation

Assume (wit, Xi
t)Ni=1 approximates the posterior distribution

πt(θ) ∝ p(θ)p(y1:t | θ) at time t.
Then the following estimator∑N

i=1w
i
t p(yt+1 | Xi

t)∑N
i=1w

i
t

converges to∫
p(yt+1 | θ)πt(θ)dθ

=
∫
p(yt+1 | θ)

p(θ)p(y1:t | θ)
p(y1:t)

dθ

= 1
p(y1:t)

∫
p(y1:t+1 | θ)p(θ)dθ = p(yt+1 | y1:t).

Similar to the likelihood estimator in particle filters.
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Toy model

We compare the SMC estimator with the estimator
obtained by importance sampling from the prior
distribution:

∀i ∈ {1, . . . , N} Xi ∼ p(θ),
∀i ∈ {1, . . . , N} Lit = p(y1:t | Xi),

pN (y1:t) = 1
N

N∑
i=1

Lit.

We plot the following relative error

rNt = |p
N (y1:t)− p(y1:t)|
|p(y1:t)|

.
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Toy model
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Figure: Relative error using SMC samplers and importance sampling
from the prior; 10 independent experiments.
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The End

Inversion, Transformation, Composition, Accept-reject,
Importance Sampling, Metropolis–Hastings, Gibbs sampling,
Adaptive Multiple Importance Sampling, Reversible Jump,
Slice Sampling, Sequential Importance Sampling, Particle filter,
Pseudo-marginal Metropolis–Hastings, Sequential Monte Carlo
Sampler. . .

What about Nested Sampling, Path Sampling, Hamiltonian
MCMC, Pinball Sampler, Sequential Quasi-Monte Carlo,
Multiple-Try Metropolis–Hastings, Coupling From the Past,
Multilevel Splitting, Wang–Landau algorithm, Free Energy
MCMC, Stochastic Gradient Langevin Dynamics, Firefly
MCMC, Configurational Bias Monte Carlo. . . ?

Good luck for the exams!
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