Advanced Simulation - Lecture 15

Patrick Rebeschini

March 5th, 2018

Outline

- Particle filters and likelihood estimation.

■ Pseudo-marginal MCMC.

- A theoretical framework around particle methods.

Sequential Monte Carlo: algorithm

- At time $t=1$
- Sample $X_{1}^{i} \sim q_{1}(\cdot)$.
- Compute the weights

$$
w_{1}^{i}=\frac{\mu\left(X_{1}^{i}\right) g\left(y_{1} \mid X_{1}^{i}\right)}{q_{1}\left(X_{1}^{i}\right)}
$$

- At time $t \geq 2$
- Resample $\left(w_{t-1}^{i}, X_{1: t-1}^{i}\right) \rightarrow\left(N^{-1}, \bar{X}_{1: t-1}^{i}\right)$.
- Sample $X_{t}^{i} \sim q_{t \mid t-1}\left(\cdot \mid \bar{X}_{t-1}^{i}\right), X_{1: t}^{i}:=\left(\bar{X}_{1: t-1}^{i}, X_{t}^{i}\right)$.
- Compute the weights

$$
w_{t}^{i}=\omega_{t}^{i}=\frac{f\left(X_{t}^{i} \mid X_{t-1}^{i}\right) g\left(y_{t} \mid X_{t}^{i}\right)}{q_{t \mid t-1}\left(X_{t}^{i} \mid X_{t-1}^{i}\right)}
$$

Likelihood estimation

- At time 1 ,

$$
\begin{aligned}
p^{N}\left(y_{1}\right) & =\frac{1}{N} \sum_{i=1}^{N} w_{1}^{i} \\
& \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \int \frac{\mu\left(x_{1}\right) g\left(y_{1} \mid x_{1}\right)}{q_{1}\left(x_{1}\right)} q_{1}\left(x_{1}\right) d x_{1}=p\left(y_{1}\right) .
\end{aligned}
$$

- At time t,

$$
\begin{aligned}
& p^{N}\left(y_{t} \mid y_{1: t-1}\right)=\frac{1}{N} \sum_{i=1}^{N} w_{t}^{i} \\
& \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \int w\left(x_{t-1}, x_{t}\right) q_{t \mid t-1}\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) d x_{t-1: t} \\
& =p\left(y_{t} \mid y_{1: t-1}\right) .
\end{aligned}
$$

where
$w\left(x_{t-1}, x_{t}\right)=\left(f\left(x_{t} \mid x_{t-1}\right) g\left(y_{t} \mid x_{t}\right)\right) /\left(q_{t \mid t-1}\left(x_{t} \mid x_{t-1}\right)\right)$.

Likelihood estimation

- This leads to the estimator

$$
\begin{aligned}
p^{N}\left(y_{1: t}\right) & =p^{N}\left(y_{1}\right) \prod_{s=2}^{t} p^{N}\left(y_{s} \mid y_{1: s-1}\right) \\
& =\prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w_{s}^{i} \xrightarrow[N \rightarrow \infty]{\text { a.s. }} p\left(y_{1: t}\right) .
\end{aligned}
$$

■ Surprisingly (?), this estimator is unbiased:

$$
\mathbb{E}\left[p^{N}\left(y_{1: t}\right)\right]=p\left(y_{1: t}\right)
$$

whereas for any $t \geq 2$,

$$
\mathbb{E}\left[p^{N}\left(y_{t} \mid y_{1: t-1}\right)\right] \neq p\left(y_{t} \mid y_{1: t-1}\right)
$$

- Typical particle estimates have a bias of order $\mathcal{O}(1 / N)$; the likelihood estimator $p^{N}\left(y_{1: t}\right)$ is an exception.

Sequential Monte Carlo: example

- Model equations:

$$
\begin{aligned}
& \forall t \geq 1 \quad X_{t}=\phi X_{t-1}+\sigma_{V} V_{t} \\
& \forall t \geq 1 \quad Y_{t}=X_{t}+\sigma_{V} W_{t}
\end{aligned}
$$

with $X_{0} \sim \mathcal{N}\left(0, \sigma_{V}^{2}\right), V_{t}, W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1), \sigma_{V}=1, \sigma_{W}=1$.

- Synthetic data is generated using $\phi^{\star}=0.95$, and we estimate the likelihood for a range of values of ϕ.

Sequential Monte Carlo: example

Figure: Log-likelihood estimates $\log p^{N}\left(y_{1: t} \mid \phi\right)$ as a function of $\phi .12$ independent replicates for each value of ϕ.

Likelihood estimation: theory

Consider the estimator of the marginal likelihood

$$
p^{N}\left(y_{1: t}\right)=\prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w_{s}^{i}
$$

- Unbiasedness

$$
\mathbb{E}\left[p^{N}\left(y_{1: t}\right)\right]=p\left(y_{1: t}\right)
$$

- Non-asymptotic relative variance

$$
\mathbb{E}\left(\left(\frac{p^{N}\left(y_{1: t}\right)}{p\left(y_{1: t}\right)}-1\right)^{2}\right) \leq \frac{B_{3} t}{N}
$$

- Choose $N=\mathcal{O}(t)$ to control the relative variance.

Metropolis-Hastings algorithm

- Target distribution on $\mathbb{X}=\mathbb{R}^{d}$ of density $\pi(x)$.

■ Proposal distribution: for any $x, x^{\prime} \in \mathbb{X}$, we have $q\left(x^{\prime} \mid x\right) \geq 0$ and $\int_{\mathbb{X}} q\left(x^{\prime} \mid x\right) d x^{\prime}=1$.

- Starting with $X^{(1)}$, for $t=2,3, \ldots$

1 Sample $X^{\star} \sim q\left(\cdot \mid X^{(t-1)}\right)$.
2 Compute

$$
\alpha\left(X^{\star} \mid X^{(t-1)}\right)=\min \left(1, \frac{\pi\left(X^{\star}\right) q\left(X^{(t-1)} \mid X^{\star}\right)}{\pi\left(X^{(t-1)}\right) q\left(X^{\star} \mid X^{(t-1)}\right)}\right) .
$$

3 Sample $U \sim \mathcal{U}_{[0,1]}$. If $U \leq \alpha\left(X^{\star} \mid X^{(t-1)}\right)$, set $X^{(t)}=X^{\star}$, otherwise set $X^{(t)}=X^{(t-1)}$.

Pseudo-marginal Metropolis-Hastings

- We need to be able to compute point-wise evaluations of $\tilde{\pi}(x) \propto \pi(x)$.

■ What if we cannot evaluate these?

■ In the setting of hidden Markov models, particle filters provide point-wise unbiased estimates of $\tilde{\pi}(x)$.

■ What if we use these estimates instead of $\tilde{\pi}(x)$?

Pseudo-marginal Metropolis-Hastings algorithm

- Starting with $X^{(1)}$, and $Z^{(1)}$ such that $\mathbb{E}\left(Z^{(1)}\right)=\tilde{\pi}\left(X^{(1)}\right)$, for $t=2,3, \ldots$

1 Sample $X^{\star} \sim q\left(\cdot \mid X^{(t-1)}\right)$.
2 Estimate $\tilde{\pi}\left(X^{\star}\right)$ by Z^{\star}, such that $\mathbb{E}\left(Z^{\star}\right)=\tilde{\pi}\left(X^{\star}\right)$.
3 Compute

$$
\alpha\left(X^{\star} \mid X^{(t-1)}\right)=\min \left(1, \frac{Z^{\star} q\left(X^{(t-1)} \mid X^{\star}\right)}{Z^{(t-1)} q\left(X^{\star} \mid X^{(t-1)}\right)}\right) .
$$

4 Sample $U \sim \mathcal{U}_{[0,1]}$. If $U \leq \alpha\left(X^{\star} \mid X^{(t-1)}\right)$, set $\left(X^{(t)}, Z^{(t)}\right)=\left(X^{\star}, Z^{\star}\right)$, otherwise set
$\left(X^{(t)}, Z^{(t)}\right)=\left(X^{(t-1)}, Z^{(t-1)}\right)$.

Pseudo-marginal Metropolis-Hastings algorithm

■ For any x, denote by Z_{x} an unbiased estimator of $\tilde{\pi}(x)$, with distribution $g(\cdot \mid x) \equiv g_{x}$.

- If $\mathbb{V}_{g(\cdot \mid x)}\left(Z_{x} / \tilde{\pi}(x)\right) \ll 1$, then the algorithm \approx original Metropolis-Hastings.
- Thus the generated chain $\left(X^{(t)}\right)_{t \geq 1}$ goes to $\approx \pi$.
- In fact, the limiting law of $\left(X^{(t)}\right)_{t \geq 0}$ is exactly $\pi \ldots$!

Pseudo-marginal Metropolis-Hastings algorithm

- Introduce an extended target distribution with pdf

$$
\bar{\pi}(x, z) \propto z \times g_{x}(z)
$$

- Introduce a proposal kernel $\bar{q}\left((x, z), d\left(x^{\star}, z^{\star}\right)\right)$ with density

$$
\bar{q}\left((x, z),\left(x^{\star}, z^{\star}\right)\right)=q\left(x, x^{\star}\right) g_{x^{\star}}\left(z^{\star}\right)
$$

- Then the Metropolis-Hastings acceptance ratio would be

$$
\begin{aligned}
& \min \left(1, \frac{\bar{\pi}\left(x^{\star}, z^{\star}\right)}{\bar{\pi}(x, z)} \frac{\bar{q}\left(\left(x^{\star}, z^{\star}\right),(x, z)\right)}{\bar{q}\left((x, z),\left(x^{\star}, z^{\star}\right)\right)}\right) \\
& =\min \left(1, \frac{z^{\star}}{z} \frac{q\left(x^{\star}, x\right)}{q\left(x, x^{\star}\right)}\right) .
\end{aligned}
$$

This is the algorithm described before.

Pseudo-marginal Metropolis-Hastings algorithm

■ The described is a standard Metropolis-Hastings targeting $\bar{\pi}$. What is the distribution of X if (X, Z) follows $\bar{\pi}$?

- By integrating Z out,

$$
\begin{aligned}
\bar{\pi}_{X}(x) & \propto \int z g_{x}(z) d z \\
& =\mathbb{E}_{g_{x}}\left[Z_{x}\right] \\
& =\tilde{\pi}(x)
\end{aligned}
$$

thus the marginal of $\bar{\pi}$ is π.

- Thus if the Markov chain $\left(X^{(t)}, Z^{(t)}\right)_{t \geq 0}$ converges to $\bar{\pi}$, then the first component $\left(X^{(t)}\right)$ converges to the first marginal of $\bar{\pi}$, which is π.
- Therefore pseudo-marginal Metropolis-Hastings is exact.

Particle Metropolis-Hastings algorithm

- To infer the parameters of a hidden Markov models, one can perform a Metropolis-Hastings algorithm on the parameter space.

■ For each proposed parameter θ^{\star}, run a particle filter to obtain an unbiased estimator $p^{N}\left(y_{1: t} \mid \theta^{\star}\right)$ of the likelihood $p\left(y_{1: t} \mid \theta^{\star}\right)$.

- Plug these estimators inside the Metropolis-Hastings ratio.
- Produce a chain $\left(\theta^{(t)}\right)$ targeting the correct posterior distribution.

Numerical experiment

Figure: Trace plot of PMMH chains, for various values of the number of particles N in the particle filter.

Numerical experiment

Figure: Histogram of the chain produced with $N=256$ particles and $T=5000$ iterations.

Numerical experiment

Figure: Autocorrelogram for various values of the number of particles N.

Theoretical framework for particle methods

- A Markov chain $\left(X_{n}\right)$ with initial distribution η_{0} and transition kernel M_{n} at time n.

■ A sequence of "potential functions" $G_{n}: \mathbb{X} \rightarrow \mathbb{R}_{+}$.

■ Filtering: $M_{n}(x, d y)=f\left(x_{n} \mid x_{n-1}\right), G_{n}\left(x_{n}\right)=g\left(y_{n} \mid x_{n}\right)$.

- Other application: Markov chain in a tube.

Theoretical framework for particle methods

■ Sequence of unnormalized measures:

$$
\gamma_{n}(f)=\mathbb{E}\left[f\left(X_{n}\right) \prod_{0 \leq k<n} G_{k}\left(X_{k}\right)\right]
$$

- Introduce non-negative kernels:

$$
Q_{n}(x, d y)=G_{n-1}(x) M_{n}(x, d y)
$$

and semi group defined by

$$
Q_{p, n}=Q_{p+1} \circ \ldots \circ Q_{n}
$$

such that

$$
\gamma_{n}(f)=\eta_{0} Q_{0, n}(f)
$$

- Filtering: $\gamma_{n}(1)=p\left(y_{0: n-1}\right)$.

Theoretical framework for particle methods

- Normalize γ_{n} to obtain

$$
\eta_{n}(f)=\gamma_{n}(f) / \gamma_{n}(1)
$$

- Equivalently

$$
\eta_{n+1}=\Phi_{n}\left(\eta_{n}\right)=\Psi_{G_{n}}\left(\eta_{n}\right) M_{n+1}
$$

where

$$
\forall \mu \in \mathcal{P}(E) \quad \Psi_{G}(\mu)(d x)=\frac{G(x) \mu(d x)}{\int G(x) \mu(d x)}=\frac{G(x) \mu(d x)}{\mu(G)}
$$

■ Filtering: η_{n} corresponds to $p\left(x_{n} \mid y_{0: n-1}\right)$.

Theoretical framework for particle methods

- Filtering distributions evolve through:

$$
\eta_{n-1} \xrightarrow[\text { reweighting }]{ } \Psi_{G_{n-1}}\left(\eta_{n-1}\right) \xrightarrow[\text { transition }]{ } \Psi_{G_{n-1}}\left(\eta_{n-1}\right) M_{n}
$$

■ Particles evolve through the same mechanism:

$$
\eta_{n-1}^{N} \xrightarrow[\text { reweighting }]{ } \Psi_{G_{n-1}}\left(\eta_{n-1}^{N}\right) \xrightarrow[\text { transition }]{ } \Psi_{G_{n-1}}\left(\eta_{n-1}^{N}\right) M_{n}
$$

plus a [re]sampling mechanism

$$
\Psi_{G_{n-1}}\left(\eta_{n-1}^{N}\right) M_{n} \xrightarrow[\text { sampling }]{ } \eta_{n}^{N}
$$

- Thus the study of the mechanism itself, i.e.

$$
\eta_{n+1}=\Phi_{n}\left(\eta_{n}\right)=\Psi_{G_{n}}\left(\eta_{n}\right) M_{n+1},
$$

informs about the behaviour of the particles as $n \rightarrow \infty$.

