Advanced Simulation - Lecture 15

Patrick Rebeschini

March 5th, 2018

Patrick Rebeschini Lecture 15

Particle filters and likelihood estimation.

■ Pseudo-marginal MCMC.

 \blacksquare A theoretical framework around particle methods.

Sequential Monte Carlo: algorithm

- At time t = 1
 - Sample $X_1^i \sim q_1(\cdot)$.
 - Compute the weights

$$w_1^i = \frac{\mu(X_1^i)g(y_1 \mid X_1^i)}{q_1(X_1^i)}.$$

• At time $t \ge 2$

- Resample $(w_{t-1}^i, X_{1:t-1}^i) \to (N^{-1}, \overline{X}_{1:t-1}^i).$
- Sample $X_t^i \sim q_{t|t-1}(\,\cdot\,|\,\bar{X}_{t-1}^i), \, X_{1:t}^i := \left(\bar{X}_{1:t-1}^i, X_t^i\right).$
- Compute the weights

$$w_{t}^{i} = \omega_{t}^{i} = \frac{f\left(X_{t}^{i} \middle| X_{t-1}^{i}\right) g\left(y_{t} \middle| X_{t}^{i}\right)}{q_{t|t-1}(X_{t}^{i} \middle| X_{t-1}^{i})}.$$

Likelihood estimation

• At time 1,

$$p^{N}(y_{1}) = \frac{1}{N} \sum_{i=1}^{N} w_{1}^{i}$$
$$\xrightarrow[N \to \infty]{} \frac{a.s.}{N \to \infty} \int \frac{\mu(x_{1})g(y_{1} \mid x_{1})}{q_{1}(x_{1})} q_{1}(x_{1}) dx_{1} = p(y_{1}).$$

• At time t,

$$p^{N}(y_{t} \mid y_{1:t-1}) = \frac{1}{N} \sum_{i=1}^{N} w_{t}^{i}$$

$$\xrightarrow[N \to \infty]{} \int w(x_{t-1}, x_{t}) q_{t|t-1}(x_{t} \mid x_{t-1}) p(x_{t-1} \mid y_{1:t-1}) dx_{t-1:t}$$

$$= p(y_{t} \mid y_{1:t-1}).$$

where

$$w(x_{t-1}, x_t) = (f(x_t \mid x_{t-1})g(y_t \mid x_t))/(q_{t|t-1}(x_t \mid x_{t-1})).$$

Lecture 15

Likelihood estimation

This leads to the estimator

$$p^{N}(y_{1:t}) = p^{N}(y_{1}) \prod_{s=2}^{t} p^{N}(y_{s} \mid y_{1:s-1})$$
$$= \prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w_{s}^{i} \xrightarrow[N \to \infty]{a.s.} p(y_{1:t}).$$

■ Surprisingly (?), this estimator is unbiased:

$$\mathbb{E}\left[p^N(y_{1:t})\right] = p(y_{1:t}),$$

whereas for any $t \geq 2$,

$$\mathbb{E}\left[p^N(y_t \mid y_{1:t-1})\right] \neq p(y_t \mid y_{1:t-1}).$$

• Typical particle estimates have a bias of order $\mathcal{O}(1/N)$; the likelihood estimator $p^N(y_{1:t})$ is an exception.

Model equations:

$$\begin{aligned} \forall t \ge 1 \quad X_t &= \phi X_{t-1} + \sigma_V V_t, \\ \forall t \ge 1 \quad Y_t &= X_t + \sigma_V W_t, \end{aligned}$$

with $X_0 \sim \mathcal{N}\left(0, \sigma_V^2\right), V_t, W_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, 1\right), \sigma_V = 1, \sigma_W = 1.$

• Synthetic data is generated using $\phi^* = 0.95$, and we estimate the likelihood for a range of values of ϕ .

Sequential Monte Carlo: example

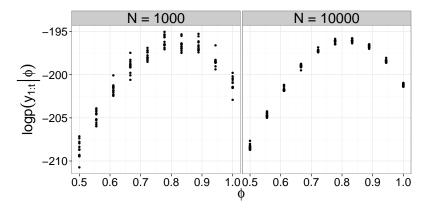


Figure: Log-likelihood estimates $\log p^N(y_{1:t} \mid \phi)$ as a function of ϕ . 12 independent replicates for each value of ϕ .

Likelihood estimation: theory

Consider the estimator of the marginal likelihood

$$p^{N}(y_{1:t}) = \prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w_{s}^{i}.$$

 \blacksquare Unbiasedness

$$\mathbb{E}\left[p^N(y_{1:t})\right] = p(y_{1:t}).$$

■ Non-asymptotic relative variance

$$\mathbb{E}\left(\left(\frac{p^N\left(y_{1:t}\right)}{p(y_{1:t})}-1\right)^2\right) \le \frac{B_3t}{N}.$$

• Choose $N = \mathcal{O}(t)$ to control the relative variance.

Metropolis–Hastings algorithm

- Target distribution on $\mathbb{X} = \mathbb{R}^d$ of density $\pi(x)$.
- Proposal distribution: for any $x, x' \in \mathbb{X}$, we have $q(x'|x) \ge 0$ and $\int_{\mathbb{X}} q(x'|x) dx' = 1$.
- Starting with $X^{(1)}$, for t = 2, 3, ...

1 Sample
$$X^{\star} \sim q\left(\cdot | X^{(t-1)}\right)$$

2 Compute

$$\alpha\left(X^{\star}|X^{(t-1)}\right) = \min\left(1, \frac{\pi\left(X^{\star}\right)q\left(X^{(t-1)}\right|X^{\star}\right)}{\pi\left(X^{(t-1)}\right)q\left(X^{\star}|X^{(t-1)}\right)}\right)$$

3 Sample $U \sim \mathcal{U}_{[0,1]}$. If $U \leq \alpha \left(X^* | X^{(t-1)} \right)$, set $X^{(t)} = X^*$, otherwise set $X^{(t)} = X^{(t-1)}$.

Pseudo-marginal Metropolis-Hastings

- We need to be able to compute point-wise evaluations of $\tilde{\pi}(x) \propto \pi(x)$.
- What if we cannot evaluate these?
- In the setting of hidden Markov models, particle filters provide point-wise unbiased estimates of $\tilde{\pi}(x)$.
- What if we use these estimates instead of $\tilde{\pi}(x)$?

Starting with $X^{(1)}$, and $Z^{(1)}$ such that $\mathbb{E}(Z^{(1)}) = \tilde{\pi}(X^{(1)})$, for t = 2, 3, ...

1 Sample
$$X^* \sim q\left(\cdot | X^{(t-1)}\right)$$
.
2 Estimate $\tilde{\pi}(X^*)$ by Z^* , such that $\mathbb{E}(Z^*) = \tilde{\pi}(X^*)$.
3 Compute

$$\alpha \left(X^{\star} | X^{(t-1)} \right) = \min \left(1, \frac{Z^{\star} q \left(X^{(t-1)} | X^{\star} \right)}{Z^{(t-1)} q \left(X^{\star} | X^{(t-1)} \right)} \right)$$

 $\begin{array}{l} \mbox{4 Sample } U \sim \mathcal{U}_{[0,1]}. \mbox{ If } U \leq \alpha \left(X^{\star} | X^{(t-1)} \right), \mbox{ set} \\ (X^{(t)}, Z^{(t)}) = (X^{\star}, Z^{\star}), \mbox{ otherwise set} \\ (X^{(t)}, Z^{(t)}) = (X^{(t-1)}, Z^{(t-1)}). \end{array}$

- For any x, denote by Z_x an unbiased estimator of $\tilde{\pi}(x)$, with distribution $g(\cdot | x) \equiv g_x$.
- If $\mathbb{V}_{g(\cdot|x)}(Z_x/\tilde{\pi}(x)) \ll 1$, then the algorithm \approx original Metropolis-Hastings.
- Thus the generated chain $(X^{(t)})_{t\geq 1}$ goes to $\approx \pi$.

• In fact, the limiting law of $(X^{(t)})_{t\geq 0}$ is exactly $\pi \dots !$

■ Introduce an extended target distribution with pdf

$$\bar{\pi}(x,z) \propto z \times g_x(z).$$

• Introduce a proposal kernel $\bar{q}((x, z), d(x^{\star}, z^{\star}))$ with density

$$\bar{q}((x,z),(x^{\star},z^{\star})) = q(x,x^{\star})g_{x^{\star}}(z^{\star}).$$

■ Then the Metropolis–Hastings acceptance ratio would be

$$\begin{split} \min\left(1, \frac{\bar{\pi}(x^{\star}, z^{\star})}{\bar{\pi}(x, z)} \frac{\bar{q}\left((x^{\star}, z^{\star}), (x, z)\right)}{\bar{q}\left((x, z), (x^{\star}, z^{\star})\right)}\right) \\ = \min\left(1, \frac{z^{\star}}{z} \frac{q(x^{\star}, x)}{q(x, x^{\star})}\right). \end{split}$$

This is the algorithm described before.

- The described is a standard Metropolis–Hastings targeting $\bar{\pi}$. What is the distribution of X if (X, Z) follows $\bar{\pi}$?
- By integrating Z out,

$$\bar{\pi}_X(x) \propto \int z g_x(z) dz$$
$$= \mathbb{E}_{g_x}[Z_x]$$
$$= \tilde{\pi}(x)$$

thus the marginal of $\bar{\pi}$ is π .

- Thus if the Markov chain $(X^{(t)}, Z^{(t)})_{t\geq 0}$ converges to $\bar{\pi}$, then the first component $(X^{(t)})$ converges to the first marginal of $\bar{\pi}$, which is π .
- \blacksquare Therefore pseudo-marginal Metropolis–Hastings is *exact*.

Particle Metropolis–Hastings algorithm

- To infer the parameters of a hidden Markov models, one can perform a Metropolis–Hastings algorithm on the parameter space.
- For each proposed parameter θ^* , run a particle filter to obtain an unbiased estimator $p^N(y_{1:t} \mid \theta^*)$ of the likelihood $p(y_{1:t} \mid \theta^*)$.
- Plug these estimators inside the Metropolis–Hastings ratio.
- Produce a chain $(\theta^{(t)})$ targeting the correct posterior distribution.

Numerical experiment

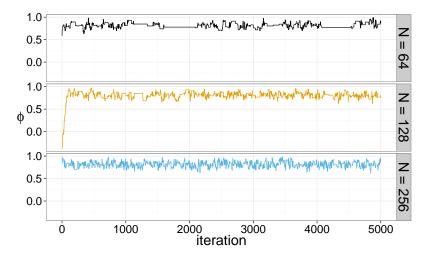


Figure: Trace plot of PMMH chains, for various values of the number of particles N in the particle filter.

Numerical experiment

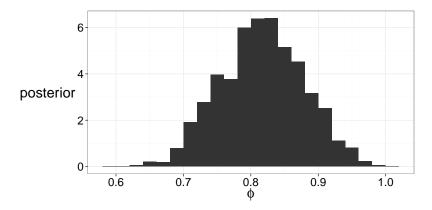


Figure: Histogram of the chain produced with N = 256 particles and T = 5000 iterations.

Numerical experiment

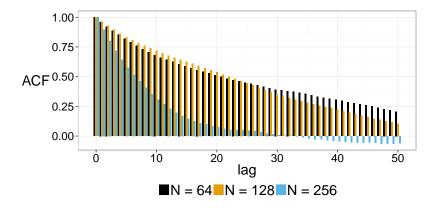


Figure: Autocorrelogram for various values of the number of particles ${\cal N}.$

• A Markov chain (X_n) with initial distribution η_0 and transition kernel M_n at time n.

• A sequence of "potential functions" $G_n : \mathbb{X} \to \mathbb{R}_+$.

• Filtering:
$$M_n(x, dy) = f(x_n \mid x_{n-1}), G_n(x_n) = g(y_n \mid x_n).$$

• Other application: Markov chain in a tube.

■ Sequence of unnormalized measures:

$$\gamma_n(f) = \mathbb{E}\left[f(X_n)\prod_{0 \le k < n} G_k(X_k)\right]$$

•

■ Introduce non-negative kernels:

$$Q_n(x,dy) = G_{n-1}(x)M_n(x,dy)$$

and semi group defined by

$$Q_{p,n} = Q_{p+1} \circ \ldots \circ Q_n$$

such that

$$\gamma_n(f) = \eta_0 Q_{0,n}(f).$$

• Filtering: $\gamma_n(1) = p(y_{0:n-1}).$

• Normalize γ_n to obtain

$$\eta_n(f) = \gamma_n(f) / \gamma_n(1).$$

Equivalently

$$\eta_{n+1} = \Phi_n(\eta_n) = \Psi_{G_n}(\eta_n) M_{n+1},$$

where

$$\forall \mu \in \mathcal{P}(E) \quad \Psi_G(\mu)(dx) = \frac{G(x)\mu(dx)}{\int G(x)\mu(dx)} = \frac{G(x)\mu(dx)}{\mu(G)}.$$

• Filtering: η_n corresponds to $p(x_n \mid y_{0:n-1})$.

• Filtering distributions evolve through:

$$\eta_{n-1} \xrightarrow{reweighting} \Psi_{G_{n-1}}(\eta_{n-1}) \xrightarrow{transition} \Psi_{G_{n-1}}(\eta_{n-1})M_n.$$

■ Particles evolve through the same mechanism:

$$\eta_{n-1}^N \xrightarrow[reweighting]{} \Psi_{G_{n-1}}(\eta_{n-1}^N) \xrightarrow[transition]{} \Psi_{G_{n-1}}(\eta_{n-1}^N) M_n$$

plus a [re]sampling mechanism

$$\Psi_{G_{n-1}}(\eta_{n-1}^N)M_n \xrightarrow{}_{sampling} \eta_n^N.$$

• Thus the study of the mechanism itself, i.e.

$$\eta_{n+1} = \Phi_n(\eta_n) = \Psi_{G_n}(\eta_n) M_{n+1},$$

informs about the behaviour of the particles as $n \to \infty$.