Advanced Simulation - Lecture 14

Patrick Rebeschini

February 28th, 2018

Outline

- Sequential Monte Carlo.
- Path degeneracy.
- Likelihood estimation.
- Selected theoretical results.

Hidden Markov Models

Figure: Graph representation of a general HMM.
$\left(X_{t}\right)$: initial distribution μ_{θ}, transition f_{θ}.
$\left(Y_{t}\right)$ given $\left(X_{t}\right)$: measurement g_{θ}.
Prior on the parameter $\theta \in \Theta$.
Inference in HMMs, Cappé, Moulines, Ryden, 2015.

Sequential Importance Sampling: algorithm

- At time $t=1$
- Sample $X_{1}^{i} \sim q_{1}(\cdot)$.
- Compute the weights

$$
w_{1}^{i}=\frac{\mu\left(X_{1}^{i}\right) g\left(y_{1} \mid X_{1}^{i}\right)}{q_{1}\left(X_{1}^{i}\right)} .
$$

- At time $t \geq 2$

■ Sample $X_{t}^{i} \sim q_{t \mid t-1}\left(\cdot \mid X_{t-1}^{i}\right), X_{1: t}^{i}:=\left(X_{1: t-1}^{i}, X_{t}^{i}\right)$.

- Compute the weights

$$
\begin{aligned}
w_{t}^{i} & =w_{t-1}^{i} \times \omega_{t}^{i} \\
& =w_{t-1}^{i} \times \frac{f\left(X_{t}^{i} \mid X_{t-1}^{i}\right) g\left(y_{t} \mid X_{t}^{i}\right)}{q_{t \mid t-1}\left(X_{t}^{i} \mid X_{t-1}^{i}\right)}
\end{aligned}
$$

Sequential Monte Carlo: algorithm

- At time $t=1$
- Sample $X_{1}^{i} \sim q_{1}(\cdot)$.
- Compute the weights

$$
w_{1}^{i}=\frac{\mu\left(X_{1}^{i}\right) g\left(y_{1} \mid X_{1}^{i}\right)}{q_{1}\left(X_{1}^{i}\right)}
$$

- At time $t \geq 2$
- Resample $\left(w_{t-1}^{i}, X_{1: t-1}^{i}\right) \rightarrow\left(N^{-1}, \bar{X}_{1: t-1}^{i}\right)$.
- Sample $X_{t}^{i} \sim q_{t \mid t-1}\left(\cdot \mid \bar{X}_{t-1}^{i}\right), X_{1: t}^{i}:=\left(\bar{X}_{1: t-1}^{i}, X_{t}^{i}\right)$.
- Compute the weights

$$
w_{t}^{i}=\omega_{t}^{i}=\frac{f\left(X_{t}^{i} \mid X_{t-1}^{i}\right) g\left(y_{t} \mid X_{t}^{i}\right)}{q_{t \mid t-1}\left(X_{t}^{i} \mid X_{t-1}^{i}\right)}
$$

Sequential Monte Carlo: output

- Particle approximation of filtering $p\left(x_{t} \mid y_{1: t}, \theta\right)$:

$$
\frac{1}{\sum_{j=1}^{N} w_{t}^{j}} \sum_{i=1}^{N} w_{t}^{i} \delta_{X_{t}^{i}}\left(d x_{t}\right)
$$

or, after resampling,

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{\bar{X}_{t}^{i}}\left(d x_{t}\right)
$$

- Particle approximation of path filtering $p\left(x_{1: t} \mid y_{1: t}, \theta\right)$:

$$
\frac{1}{\sum_{j=1}^{N} w_{t}^{j}} \sum_{i=1}^{N} w_{t}^{i} \delta_{X_{1: t}^{i}}\left(d x_{1: t}\right)
$$

or, similarly, the one after resampling.

Sequential Monte Carlo: complexity

- Propagating and weighting the particles is $\mathcal{O}(N)$.
- Each particle can be propagated and weighted in parallel.
- Multinomial resampling is $\mathcal{O}(N)$ if the uniforms are generated in sorted order.
- Resampling cannot be completely parallel, since it creates correlation between the particles.
- The memory cost is $\mathcal{O}(N)$ if only the latest particles are stored.
- The memory cost is at most $\mathcal{O}(N t)$ if the paths are stored; efficient implementations reduce this to $\mathcal{O}(t+N \log N)$.

Sequential Monte Carlo: example

Figure: Support of the approximation $\left(\bar{X}_{t}^{i}\right)_{i=1}^{N}$ of $p\left(x_{t} \mid y_{1: t}\right)$, over time. The blue curve shows the expectation $\mathbb{E}\left(x_{t} \mid y_{1: t}\right)$ at all times t.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=10$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=20$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=30$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=40$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=50$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=60$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=70$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=80$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=90$.

Sequential Monte Carlo: example

Figure: Trajectories $\bar{X}_{1: t}^{i}$, at time $t=100$.

Path degeneracy

■ Particle filters approximate well $p\left(x_{t} \mid y_{1: t}\right)$ but not $p\left(x_{s} \mid y_{1: t}\right)$ for $s \ll t$.

- Specific particle methods have been developped for this task: fixed lag smoother, forward filtering backward smoothing, etc.
- The simplest is the fixed lag smoother: $p\left(x_{s} \mid y_{1: t}\right)$ is approximated by the particle approximation of $p\left(x_{s} \mid y_{1:(s+\Delta) \wedge t}\right)$ for a small integer Δ.
- Fixed-lag smoothing introduces a bias but reduces the variance.

Likelihood estimation

- At time 1 ,

$$
\begin{aligned}
p^{N}\left(y_{1}\right) & =\frac{1}{N} \sum_{i=1}^{N} w_{1}^{i} \\
& \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \int \frac{\mu\left(x_{1}\right) g\left(y_{1} \mid x_{1}\right)}{q_{1}\left(x_{1}\right)} q_{1}\left(x_{1}\right) d x_{1}=p\left(y_{1}\right) .
\end{aligned}
$$

- At time t,

$$
\begin{aligned}
& p^{N}\left(y_{t} \mid y_{1: t-1}\right)=\frac{1}{N} \sum_{i=1}^{N} w_{t}^{i} \\
& \xrightarrow[N \rightarrow \infty]{\text { a.s. }} \int w\left(x_{t-1}, x_{t}\right) q_{t \mid t-1}\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid y_{1: t-1}\right) d x_{t-1: t} \\
& =p\left(y_{t} \mid y_{1: t-1}\right) .
\end{aligned}
$$

where
$w\left(x_{t-1}, x_{t}\right)=\left(f\left(x_{t} \mid x_{t-1}\right) g\left(y_{t} \mid x_{t}\right)\right) /\left(q_{t \mid t-1}\left(x_{t} \mid x_{t-1}\right)\right)$.

Likelihood estimation

- This leads to the estimator

$$
\begin{aligned}
p^{N}\left(y_{1: t}\right) & =p^{N}\left(y_{1}\right) \prod_{s=2}^{t} p^{N}\left(y_{s} \mid y_{1: s-1}\right) \\
& =\prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w_{s}^{i} \xrightarrow[N \rightarrow \infty]{\text { a.s. }} p\left(y_{1: t}\right) .
\end{aligned}
$$

■ Surprisingly (?), this estimator is unbiased:

$$
\mathbb{E}\left[p^{N}\left(y_{1: t}\right)\right]=p\left(y_{1: t}\right)
$$

whereas for any $t \geq 2$,

$$
\mathbb{E}\left[p^{N}\left(y_{t} \mid y_{1: t-1}\right)\right] \neq p\left(y_{t} \mid y_{1: t-1}\right)
$$

- Typical particle estimates have a bias of order $\mathcal{O}(1 / N)$; the likelihood estimator $p^{N}\left(y_{1: t}\right)$ is an exception.

Sequential Monte Carlo: example

- Model equations:

$$
\begin{aligned}
& \forall t \geq 1 \quad X_{t}=\phi X_{t-1}+\sigma_{V} V_{t} \\
& \forall t \geq 1 \quad Y_{t}=X_{t}+\sigma_{V} W_{t}
\end{aligned}
$$

with $X_{0} \sim \mathcal{N}\left(0, \sigma_{V}^{2}\right), V_{t}, W_{t} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1), \sigma_{V}=1, \sigma_{W}=1$.

- Synthetic data is generated using $\phi^{\star}=0.95$, and we estimate the likelihood for a range of values of ϕ.

Sequential Monte Carlo: example

Figure: Log-likelihood estimates $\log p^{N}\left(y_{1: t} \mid \phi\right)$ as a function of $\phi .12$ independent replicates for each value of ϕ.

Selected theoretical results

- Particle filters have been theoretically studied in the past 20 years.
- Convergence results include Central Limit Theorems and non-asymptotic results.
- They provide guidelines to select the number of particles as a function of T, the size of the data, and other algorithmic parameters.

■ Consistency as $N \rightarrow \infty$ is simple to prove, as each step (propagation, weighting, resampling) is itself consistent.

Selected theoretical results

Consider $I\left(\varphi_{t}\right)=\int \varphi_{t}\left(x_{1: t}\right) p\left(x_{1: t} \mid y_{1: t}\right) d x_{1: t}$.

- L_{p}-bound on the path space:

$$
\mathbb{E}\left[\left|I^{N}\left(\varphi_{t}\right)-I\left(\varphi_{t}\right)\right|^{p}\right]^{1 / p} \leq \frac{B(t) c(p)\left\|\varphi_{t}\right\|_{\infty}}{\sqrt{N}}
$$

- Central limit theorem on the path space.

$$
\sqrt{N}\left(I^{N}\left(\varphi_{t}\right)-I\left(\varphi_{t}\right)\right) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} \mathcal{N}\left(0, \sigma_{t}^{2}\right)
$$

- As expected, $B(t)$ and σ_{t}^{2} typically grow exponentially fast with t. This is the path degeneracy problem.

Selected theoretical results

Consider instead $I\left(\varphi_{t}\right)=\int \varphi_{t}\left(x_{t}\right) p\left(x_{t} \mid y_{1: t}\right) d x_{t}$.

- L_{p}-bound:

$$
\begin{aligned}
& \mathbb{E} {\left[\left|I^{N}\left(\varphi_{t}\right)-I\left(\varphi_{t}\right)\right|^{p}\right]^{1 / p} \leq \frac{B_{1} c(p)\left\|\varphi_{t}\right\|_{\infty}}{\sqrt{N}} } \\
& \quad \sqrt{N}\left(I^{N}\left(\varphi_{t}\right)-I\left(\varphi_{t}\right)\right) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} \mathcal{N}\left(0, \sigma_{t}^{2}\right)
\end{aligned}
$$

- For the filtering estimates, the error is independent of the time $t: \sigma_{t}^{2}<\sigma_{\max }^{2}$ for all t, and B_{1} independent of t.
- Particle filters are fully online.

Selected theoretical results

Consider the estimator of the marginal likelihood

$$
p^{N}\left(y_{1: t}\right)=\prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w_{s}^{i}
$$

- Unbiasedness

$$
\mathbb{E}\left[p^{N}\left(y_{1: t}\right)\right]=p\left(y_{1: t}\right)
$$

- Non-asymptotic relative variance

$$
\mathbb{E}\left(\left(\frac{p^{N}\left(y_{1: t}\right)}{p\left(y_{1: t}\right)}-1\right)^{2}\right) \leq \frac{B_{3} t}{N}
$$

- Choose $N=\mathcal{O}(t)$ to control the relative variance.

