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Hidden Markov Models
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Figure: Graph representation of a general HMM.

(Xt): initial distribution µθ, transition fθ.
(Yt) given (Xt): measurement gθ.
Prior on the parameter θ ∈ Θ.

Inference in HMMs, Cappé, Moulines, Ryden, 2015.
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Sequential Importance Sampling: algorithm

At time t = 1
Sample Xi

1 ∼ q1(·).
Compute the weights

wi1 = µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) .

At time t ≥ 2
Sample Xi

t ∼ qt|t−1( ·|Xi
t−1), Xi

1:t :=
(
Xi

1:t−1, X
i
t

)
.

Compute the weights

wit = wit−1 × ωit

= wit−1 ×
f
(
Xi
t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

.
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Sequential Monte Carlo: algorithm

At time t = 1
Sample Xi

1 ∼ q1(·).
Compute the weights

wi1 = µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) .

At time t ≥ 2
Resample

(
wit−1, X

i
1:t−1

)
→
(
N−1, X

i
1:t−1

)
.

Sample Xi
t ∼ qt|t−1( ·| X̄i

t−1), Xi
1:t :=

(
X̄i

1:t−1, X
i
t

)
.

Compute the weights

wit = ωit =
f
(
Xi
t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

.
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Sequential Monte Carlo: output

Particle approximation of filtering p(xt | y1:t, θ):

1∑N
j=1w

j
t

N∑
i=1

witδXi
t
(dxt),

or, after resampling,

1
N

N∑
i=1

δX̄i
t
(dxt).

Particle approximation of path filtering p(x1:t | y1:t, θ):

1∑N
j=1w

j
t

N∑
i=1

witδXi
1:t

(dx1:t),

or, similarly, the one after resampling.
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Sequential Monte Carlo: complexity

Propagating and weighting the particles is O(N).

Each particle can be propagated and weighted in parallel.

Multinomial resampling is O(N) if the uniforms are
generated in sorted order.

Resampling cannot be completely parallel, since it creates
correlation between the particles.

The memory cost is O(N) if only the latest particles are
stored.

The memory cost is at most O(Nt) if the paths are stored;
efficient implementations reduce this to O(t+N logN).
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Sequential Monte Carlo: example
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Figure: Support of the approximation (X̄i
t)N

i=1 of p(xt | y1:t), over
time. The blue curve shows the expectation E(xt | y1:t) at all times t.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 10.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 20.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 30.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 40.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 50.

Patrick Rebeschini Lecture 14 13/ 27



Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 60.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 70.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 80.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 90.
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Sequential Monte Carlo: example
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Figure: Trajectories X̄i
1:t, at time t = 100.
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Path degeneracy

Particle filters approximate well p(xt | y1:t) but not
p(xs | y1:t) for s << t.

Specific particle methods have been developped for this
task: fixed lag smoother, forward filtering backward
smoothing, etc.

The simplest is the fixed lag smoother: p(xs | y1:t) is
approximated by the particle approximation of
p(xs | y1:(s+∆)∧t) for a small integer ∆.

Fixed-lag smoothing introduces a bias but reduces the
variance.
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Likelihood estimation

At time 1,

pN (y1) = 1
N

N∑
i=1

wi1

a.s.−−−−→
N→∞

∫
µ(x1)g(y1 | x1)

q1 (x1) q1 (x1) dx1 = p(y1).

At time t,

pN (yt | y1:t−1) = 1
N

N∑
i=1

wit

a.s.−−−−→
N→∞

∫
w(xt−1, xt)qt|t−1(xt | xt−1)p(xt−1 | y1:t−1)dxt−1:t

= p(yt | y1:t−1).

where
w(xt−1, xt) = (f(xt | xt−1)g(yt | xt))/(qt|t−1(xt | xt−1)).
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Likelihood estimation

This leads to the estimator

pN (y1:t) = pN (y1)
t∏

s=2
pN (ys | y1:s−1)

=
t∏

s=1

1
N

N∑
i=1

wis
a.s.−−−−→

N→∞
p(y1:t).

Surprisingly (?), this estimator is unbiased:

E
[
pN (y1:t)

]
= p(y1:t),

whereas for any t ≥ 2,

E
[
pN (yt | y1:t−1)

]
6= p(yt | y1:t−1).

Typical particle estimates have a bias of order O(1/N); the
likelihood estimator pN (y1:t) is an exception.
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Sequential Monte Carlo: example

Model equations:

∀t ≥ 1 Xt = φXt−1 + σV Vt,

∀t ≥ 1 Yt = Xt + σVWt,

with X0 ∼ N
(
0, σ2

V

)
, Vt,Wt

i.i.d.∼ N (0, 1), σV = 1, σW = 1.

Synthetic data is generated using φ? = 0.95, and we
estimate the likelihood for a range of values of φ.
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Sequential Monte Carlo: example
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Figure: Log-likelihood estimates log pN (y1:t | φ) as a function of φ. 12
independent replicates for each value of φ.
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Selected theoretical results

Particle filters have been theoretically studied in the past
20 years.

Convergence results include Central Limit Theorems and
non-asymptotic results.

They provide guidelines to select the number of particles as
a function of T , the size of the data, and other algorithmic
parameters.

Consistency as N →∞ is simple to prove, as each step
(propagation, weighting, resampling) is itself consistent.
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Selected theoretical results

Consider I(ϕt) =
∫
ϕt(x1:t)p(x1:t | y1:t)dx1:t.

Lp-bound on the path space:

E
[∣∣∣IN (ϕt)− I (ϕt)

∣∣∣p]1/p ≤ B(t)c(p) ||ϕt||∞√
N

,

Central limit theorem on the path space.
√
N
(
IN (ϕt)− I (ϕt)

) D−−−−→
N→∞

N
(
0, σ2

t

)
,

As expected, B(t) and σ2
t typically grow exponentially fast

with t. This is the path degeneracy problem.
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Selected theoretical results

Consider instead I(ϕt) =
∫
ϕt(xt)p(xt | y1:t)dxt.

Lp-bound:

E
[∣∣∣IN (ϕt)− I (ϕt)

∣∣∣p]1/p ≤ B1c(p) ||ϕt||∞√
N

√
N
(
IN (ϕt)− I (ϕt)

) D−−−−→
N→∞

N
(
0, σ2

t

)
,

For the filtering estimates, the error is independent of the
time t: σ2

t < σ2
max for all t, and B1 independent of t.

Particle filters are fully online.
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Selected theoretical results

Consider the estimator of the marginal likelihood

pN (y1:t) =
t∏

s=1

1
N

N∑
i=1

wis.

Unbiasedness

E
[
pN (y1:t)

]
= p(y1:t).

Non-asymptotic relative variance

E

(pN (y1:t)
p(y1:t)

− 1
)2
 ≤ B3t

N
.

Choose N = O(t) to control the relative variance.
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