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Outline

Hidden Markov models, also called state space models.

Various examples.

Inference leads to high-dimensional integrals.
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Time series

Observations (yt)t≥1 assumed to be dependent, usually
specified by an initial distribution: Y1 ∼ µθ, and a
conditional distribution:

Yt | Y1:t−1 = y1:t−1 ∼ pθ(· | y1, . . . , yt−1),

where we use the notation yk:l = (yk, . . . , yl).

The likelihood is given by

∀θ ∈ Θ L(θ; y1, . . . , yt) = µθ(y1)
t∏

s=2
pθ(ys | y1, . . . , ys−1).

Put a prior on θ and consider the problem of sampling
from the posterior given y1:t.
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Time series

In simple cases, the likelihood can be computed point-wise.

Example: Bayesian analysis of a Markov chain, in Chapter
3 of the lecture notes.

ARCH(1) model: y1 ∼ N (0, 1) and for all t ≥ 2,

yt = εt (ht)1/2 ,

εt ∼ N (0, 1),
ht = α0 + α1y

2
t−1.

In this case we can implement a Metropolis–Hastings
algorithm to sample from π(θ | y1:t), for each t.

Or importance sampling to obtain estimates at each
intermediate time 1 ≤ s ≤ t.
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Hidden Markov Models

We introduce (Xt)t≥1 a latent/hidden/unobserved X-valued
Markov process defined by its initial density µθ

X1 ∼ µθ (·) ,

and its homogeneous Markov transition kernel fθ

Xt|Xt−1 = xt−1 ∼ fθ ( ·|xt−1) .

Sometimes we note X0 ∼ µθ.
Hence the law of the path/trajectory X1:t is given by

pX1:t (x1:t) = pX1 (x1)
∏t

k=2
pXk|X1:k−1 (xk|x1:k−1) (chain rule)

= pX1 (x1)
∏t

k=2
pXk|Xk−1 (xk|xk−1) (Markov)

= µθ (x1)
∏t

k=2
fθ (xk|xk−1) .
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Hidden Markov Models

The Y-valued observations (Yt)t≥1 are assumed to be
independent conditional upon (Xt)t≥1 and their conditional
distribution satisfy

Yt|Xt = xt ∼ gθ ( ·|xt) ,

i.e. the distribution of Yt is independent of (Xk)k 6=t
conditional upon Xt = xt.
Hence we have the law of observations given the hidden
process,

pY1:t|(Xl)l≥1

(
y1:t| (xl)l≥1

)
=

∏t

k=1
pYk|Xk

(yk|xk) (cond. independent)

=
∏t

k=1
gθ (yk|xk) .
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Hidden Markov Models
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Figure: Graph representation of a general HMM.

(Xt): initial distribution µθ, transition fθ.
(Yt) given (Xt): measurement gθ.
Prior on the parameter θ ∈ Θ.

Inference in HMMs, Cappé, Moulines, Ryden, 2005.
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Example: S&P 500 index
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Figure: Daily returns yt = log(pt/pt−1) between 1984 and 1991.
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Example: stochastic volatility model

Latent stochastic volatility (Xt)t≥1 of an asset is modeled
through

Xt = ϕXt−1 + σVt, Yt = β exp (Xt)Wt

where Vt,Wt ∼ N (0, 1) .

Popular alternative to ARCH and GARCH models (Engle,
2003 Nobel Prize).
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Example: battery voltage
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Figure: Current (input) and measured voltage (output) of a battery.
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Example: phytoplankton – zooplankton
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Figure: Filtering of the latent variables (top: P, bottom: Z).
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Example: athletic records

Year

T
im

es
 (

se
co

nd
s)

480

490

500

510

520

530

1980 1985 1990 1995 2000 2005 2010

Figure: Best two times of each year in women’s 3000m events.
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Example: tracking
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Example: tracking

Markov model describing dynamic of the target
X1
t
·
X

1
t

X2
t
·
X

2
t

 =


1 δ 0 0
0 1 0 0
0 0 1 δ
0 0 0 1



X1
t−1
·
X

1
t−1

X2
t−1
·
X

2
t−1

+Vt, Vt
i.i.d.∼ N (0,Σv) ,

Measurements provided by the radar

Yt = tan−1
(
X1
t

X2
t

)
+Wt, Wt

i.i.d.∼ N
(
0, σ2

)
.
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Finite State-Space HMM

Automatic speech recognition: Yt is the speech signal, Xt

represents the word that is being spoken.
Activity recognition: Yt represents a video frame, Xt is the
class of activity the person is engaged in (e.g., running,
walking, sitting, etc.)
Part of speech tagging: Yt represents a word, Xt represents
its part of speech (noun, verb, adjective, etc.)
Gene finding: Yt represents the DNA nucleotides
(A,C,G,T), Xt represents whether we are inside a
gene-coding region or not.

Specific algorithms allow to estimate X1:t given y1:t and to
evaluate the likelihood of the parameters: Viterbi,
forward-backward, Baum–Welch.
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Linear Gaussian models

Consider X = Rdx and Y = Rdy . Let Xt be defined by

Xt = AXt−1 + εt

for ε ∼ N (0,Σx), and some matrices A and Σx.
Let the observations be defined by

Yt = CXt + Σyηt

for η ∼ N (0,Σy), and some matrices C and Σy.
Then the distribution of X1:t given Y1:t can be retrieved by
“Kalman recursions”.
The likelihood of the parameters (A,C,Σx,Σy) can be
evaluated exactly, which allows parameter estimation using
standard techniques.
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General inference in HMM

Given Y1:t = y1:t and θ, inference on X1:t relies on

p (x1:t| y1:t, θ) = p (x1:t, y1:t | θ)
p (y1:t | θ)

where

p (x1:t, y1:t | θ) = p (x1:t | θ) p (y1:t|x1:t, θ)

with

p (x1:t | θ) = µθ (x1)
t∏

k=2
fθ (xk|xk−1)

p (y1:t | x1:t, θ) =
t∏

k=1
gθ (yk | xk) .

The (marginal) likelihood is given by

p (y1:t | θ) =
∫
Xt
p (x1:t, y1:t | θ) dx1:t
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General inference in HMM

Proposition: The posterior p (x1:t| y1:t, θ) satisfies

p (x1:t| y1:t, θ) = p (x1:t−1| y1:t−1, θ)
fθ (xt|xt−1) gθ (yt|xt)

p (yt| y1:t−1, θ)
where

p (yt| y1:t−1, θ) =
∫
p (x1:t−1| y1:t−1, θ) fθ (xt|xt−1) gθ (yt|xt) dx1:t.

Proof. Dropping the parameter θ, we have
p (x1:t, y1:t) = p (x1:t−1, y1:t−1) f (xt|xt−1) g (yt|xt)

p (y1:t) = p (y1:t−1) p (yt| y1:t−1)
so

p (x1:t| y1:t) = p (x1:t, y1:t)
p (y1:t)

= p (x1:t−1, y1:t−1)
p (y1:t−1)︸ ︷︷ ︸

p(x1:t−1|y1:t−1)

f (xt|xt−1) g (yt|xt)
p (yt| y1:t−1)

and the expression for p (yt| y1:t−1) follows.
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General inference in HMM

Proposition: The marginal posterior p (xt| y1:t) satisfies
the following recursion

p (xt| y1:t−1) =
∫
f (xt|xt−1) p (xt−1| y1:t−1) dxt−1

p (xt| y1:t) = g (yt|xt) p (xt| y1:t−1)
p (yt| y1:t−1)

where

p (yt| y1:t−1) =
∫
g (yt|xt) p (xt| y1:t−1) dxt.

This recursion can be implemented exactly for finite
state-space HMM and linear Gaussian models.

Otherwise these integrals are intractable.
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General inference in HMM

In general, the filtering problem is thus intractable:∫
ϕ(xt)p(xt | y1:t, θ)dxt =

∫
ϕ(xt)p(x1:t, y1:t | θ)dx1:t

=
∫
ϕ(xt)µθ(x1)

t∏
s=1

fθ(xs | xs−1)
t∏

s=1
gθ(ys | xs)dx1:t

It is a t× dim(X) dimensional integral.
The likelihood is also intractable:

p(y1:t | θ) =
∫
p(x1:t, y1:t | θ)dx1:t

=
∫
µθ(x1)

t∏
s=1

fθ(xs | xs−1)
t∏

s=1
gθ(ys | xs)dx1:t

Thus we cannot compute it pointwise, e.g. to perform
Metropolis–Hastings algorithm on the parameter space.
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General inference in HMM

The historical approach consists in performing Gibbs
sampling on the joint space of θ and X1:t.

Alternate between sampling from θ | x1:t, y1:t, with
conditional distribution

p(θ | x1:t, y1:t) ∝ p(θ)p(x1:t, y1:t | θ)

= p(θ)µθ(x1)
t∏

s=1
fθ(xs | xs−1)

t∏
s=1

gθ(ys | xs)

which can (perhaps) be evaluated pointwise.

And sampling from p(x1:t | y1:t, θ). How?
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General inference in HMM

Sampling from p(x1:t | y1:t, θ) can be done by iteratively
sampling xk given xk−1, yk, xk+1 and θ.

Indeed

p(xk | x−k, y1:t, θ) = p(xk | xk−1, yk, xk+1, θ)
∝ p(xk | xk−1, θ)p(yk, xk+1 | xk, θ)
= fθ(xk | xk−1)fθ(xk+1 | xk)gθ(yk | xk)

and (perhaps) we can evaluate this density point-wise.

In which case, we could use Metropolis–Hastings to update
each component of X1:t given the others.

By definition, the components of X1:t are highly correlated,
thus this Gibbs sampling approach will fail (remember the
bivariate normal!).
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Hidden Markov Models

Usually, batch estimation of p(θ, x1:T | y1:T ) using MCMC
performs poorly because of high correlations between
components.

Filtering given a fixed θ, i.e. approximating p(x1:t | y1:t, θ),
can be efficiently performed using particle filters.

We’ll see that particle filters also provide estimators of the
likelihood, which can be used to estimate θ.

Particle Markov chain Monte Carlo for batch estimation of
p(θ, x1:T | y1:T ) (Andrieu, Doucet, Holenstein, 2010).
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Objects of practical interest
Various by-products of the joint posterior p(θ, x0:t | y1:t):

prediction under parameter uncertainty through
p(xt+1 | y1:t),

p(xt+1 | y1:t) =
∫

Θ

∫
X t+1

fθ(xt+1 | xt)︸ ︷︷ ︸
transition

p(dθ, dx0:t | y1:t)︸ ︷︷ ︸
joint posterior

.

predictive checking through P(Yt+1 ≤ yt+1 | y1:t),

P(Yt+1 < yt+1 | y1:t) =
∫

Θ

∫
X

∫ yt+1

−∞
gθ(dy | xt+1)p(dxt+1, dθ | y1:t).

sequential model comparison through p(y1:t).

p(y1:t) =
∫

Θ

∫
X t+1

p(dθ, dx0:t, y1:t)
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Sequential Importance Sampling

We now consider the parameter θ to be fixed. We want to
infer X1:t given y1:t.

Let us consider the problem of approximating the first
filtering distribution p(x1 | y1):

p(x1 | y1) = µ(x1)g(y1 | x1)∫
X µ(x1)g(y1 | x1)dx1

∝ µ(x1)g(y1 | x1).

Drawing X1:N
1 from q1,

∀i ∈ {1, . . . , N} wi1 = µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) .
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Sequential Importance Sampling

Empirical distribution πN1 (x1) approximates p(x1 | y1):

πN1 (x1) =
∑N
i=1w

i
1δXi

1
(x1)∑N

j=1w
j
1

=
N∑
i=1

W i
1δXi

1
(x1),

in the sense

IN (ϕ1) =
∫
ϕ1(x)πN1 (x1)dx1 =

N∑
i=1

W i
1ϕ1(Xi

1)

a.s.−−−−→
N→∞

∫
ϕ1(x)p(x1 | y1)dx.

Marginal likelihood estimator:

pN (y1) = 1
N

N∑
i=1

wi1
a.s.−−−−→

N→∞

∫
µ(x1)g(y1 | x1)

q1 (x1) q1 (x1) dx1 = p(y1).
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Sequential Importance Sampling

How to approximate p(x1:2 | y1:2), p(x2 | y1:2) and p(y1:2)?
At step t− 1, assume N trajectories Xi

1:t−1 sampled from
qt−1 and with weights

wit−1 ∝ p(Xi
1:t−1 | y1:t−1)/qt−1(Xi

1:t−1).
Introduce proposal qt|t−1(xt | xt−1). For each i,

Xi
t ∼ qt|t−1(xt | Xi

t−1),
then Xi

1:t = (Xi
1:t−1, X

i
t) follows

qt(x1:t) := qt−1(x1:t−1)qt|t−1(xt | xt−1)
The correct importance weight is

w(x1:t) ∝
p(x1:t | y1:t)
qt(x1:t)

∝ p (x1:t−1| y1:t−1) f (xt|xt−1) g (yt|xt)
qt−1(x1:t−1)qt|t−1(xt | xt−1)

∝ w(x1:t−1)f (xt|xt−1) g (yt|xt)
qt|t−1(xt | xt−1) .

Patrick Rebeschini Lecture 12 27/ 41



Sequential Importance Sampling

Thus the incremental weights are

ωit := ωt
(
Xi
t−1, X

i
t

)
:=

f
(
Xi
t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

.

The new weights are obtained by the update

wit = wit−1 × ωit.

The new “particles” are thus (wit, Xi
1:t) for i ∈ {1, . . . , N}.
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Sequential Importance Sampling

Then the “particle approximation” πNt of p(x1:t | y1:t) is
consistent, in the sense that for any test function ϕt on Xt,

IN (ϕt) =
∫
ϕt(x1:t)πNt (x1:t)dx1:t =

∑N
i=1w

i
tϕt(Xi

1:t)∑N
i=1w

i
t

a.s.−−−−→
N→∞

∫
ϕt(x1:t)p(x1:t | y1:t)dx1:t.

The incremental likelihood can be approximated too:

pN (yt | y1:t−1) =
∑N
i=1w

i
t−1ω

i
t∑N

i=1w
i
t−1

a.s.−−−−→
N→∞

p(yt | y1:t−1),

by a standard importance sampling argument.
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Sequential Importance Sampling: algorithm

At time t = 1
Sample Xi

1 ∼ q1(·).
Compute the weights

wi1 = µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) .

At time t ≥ 2
Sample Xi

t ∼ qt|t−1( ·|Xi
t−1).

Compute the weights

wit = wit−1 × ωit

= wit−1 ×
f
(
Xi
t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

.
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Sequential Importance Sampling: diagnostics

As already seen for IS, we can compute the effective sample
size

ESSt =

(∑N
i=1w

i
t

)2(∑N
i=1(wit)2

) = 1∑n
i=1

(
W i
t

)2 .

ESSt = N if W i
t = N−1 for all i.

If there exists i such that W i
t ≈ 1, and for j 6= i, W j

t ≈ 0,
then ESSt ≈ 1.

As a rule of thumb, the higher the ESS the better our
approximation.
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Sequential Importance Sampling: prior proposal

Default choice of proposal:

q1(x1) = µ(x1),
qt|t−1(xt | xt−1) = f(xt | xt−1).

Then the incremental weight takes the form

ω(xt−1, xt) = g(yt | xt).

This proposal blindly propagates xt−1 to xt without taking
yt into account.

We can implement SIS as soon as we can sample from the
hidden process (Xt)t≥1 and evaluate g(y | x) pointwise.

Patrick Rebeschini Lecture 12 32/ 41



Sequential Importance Sampling: optimal proposals

Proposal qt|t−1 (xt|xt−1) that minimizes the variance of
(ωit)Ni=1.

Turns out to be

qopt
t|t−1 (xt|xt−1) = f (xt|xt−1) g (yt|xt)

p (yt|xt−1) .

This uses the observation yt to guide the propagation of xt.

Associated incremental weight:

ωopt
t (xt−1, xt) = p (yt|xt−1) ,

does not depend on xt.
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Sequential Importance Sampling: example

Model equations:

∀t ≥ 1 Xt = ϕXt−1 + σV Vt,

∀t ≥ 1 Yt = Xt + σVWt,

with X0 ∼ N
(
0, σ2

V

)
, Vt,Wt

i.i.d.∼ N (0, 1), ϕ = 0.95,
σV = 1, σW = 1.

Synthetic dataset of size T = 100.

We can compute the filtering quantities using Kalman
filters.

We want to estimate them using SIS, with N = 1000
particles, using the prior proposal or the optimal proposal.
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Sequential Importance Sampling: example
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Figure: Generated hidden process (Xt)t≥1, along with the filtering
mean calculated using the Kalman filter,

(
X̄KF

)
.
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Sequential Importance Sampling: example
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Figure: Generated observations (Yt)t≥1.
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Sequential Importance Sampling: example
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Figure: Estimation of filtering means E (xt | y1:t).
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Sequential Importance Sampling: example
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Figure: Estimation of filtering variances V (xt | y1:t).
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Sequential Importance Sampling: example
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Figure: Estimation of marginal log likelihoods log p(y1:t).
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Sequential Importance Sampling: example
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Figure: Effective sample size over time.
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Sequential Importance Sampling: example
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Figure: Spread of 100 paths drawn from the prior proposal, and KF
means in blue. Darker lines indicate higher weights.
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