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Outline

Often we have various possible models for the same dataset.

Reversible jump enables joint parameter and model
estimation, in one run.

How to choose between models without resorting to
reversible jump?

Various Monte Carlo ways to estimate the evidence
associated to each model.
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Bayesian model choice

Assume we have a collection of models Mk for k ∈ K.

With data we can learn parameters given each model Mk,
but we can also learn about the models.

Put a prior on models Mk. Within each model, prior
p(θk | Mk) on the parameters.

Joint posterior distribution of interest:

π(Mk, θk | y) = π(Mk | y)π(θk | y,Mk)

which is defined on

∪k∈K{Mk} ×Θk.
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Bayesian polynomial regression

We select k ∈ {0, ...,Mmax} and

P (Mk) = pk = 1
Mmax + 1

with Θk = Rk+1 × R+

pk
(
β, σ2

)
= N

(
β; 0, σ2Ik+1

)
IG
(
σ2; 1, 1

)
.

In this case, we have analytic expression for

pk (y1:n) =
∫

Θk

pk
(
β, σ2

) n∏
i=1
N
(
yi; f (xi;β) , σ2

)
dβdσ2.

Bayesian model selection automatically prevents overfitting.
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Bayesian polynomial regression
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Figure: f (x;β) for random draws from pM (β| y1:n) and evidence
pM (y1:n).
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Transdimensional samplers

Reversible Jump aims at parameter estimation and model
choice in one run.

In general, hard to design auxiliary variables for dimension
matching and deterministic mappings.

Transdimensional samplers constitute an on-going research
area.
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Estimation of the evidence

The model evidence, or normalizing constant, is π(y | Mk):

π(θk | y,Mk) = π(θk | Mk)π(y | θk,Mk)
π(y | Mk)

.

Using some integral representation, for instance

π(y | Mk) =
∫
π(θk | Mk)π(y | θk,Mk)dθk,

we can estimate the evidence using Monte Carlo methods.
As a starter, we can consider

π(y | Mk) ≈
1
N

N∑
i=1

π(y | θ(i)
k ,Mk)

where θ(i)
k for i ∈ {1, . . . , N} are drawn i.i.d. from the prior

π(θk | Mk).
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Estimation of the evidence

How is this going to perform when the likelihood is peaky
compared to the prior?

We can design a proposal distribution q (e.g. using an
approximate posterior sample), and consider

π(y | Mk) ≈
1
N

N∑
i=1

π(θ(i)
k | Mk)π(y | θ(i)

k ,Mk)
q(θ(i)

k )

where θ(i)
k for i ∈ {1, . . . , N} are drawn i.i.d. from q.

This is an importance sampling strategy; the optimal
distribution is proportional to the integrand, hence it is the
posterior distribution itself.
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Estimation of the evidence

An approximate posterior sample, produced e.g. by
MCMC, could thus be useful to estimate the evidence?
Typically we cannot evaluate the corresponding “q”.
Can we write the normalizing constant as an integral with
respect to the posterior?∫

ϕ(θ)π(θ | y)dθ = π(y)

for some choice ϕ? (dropping the index k for simplicity)
Some people have proposed to use the following reasoning:∫

ϕ(θ)π(θ | y)dθ = π(y)−1
∫
ϕ(θ)π(y | θ)π(θ)dθ

thus if ϕ(θ) = 1/π(y | θ) we have∫
ϕ(θ)π(θ | y)dθ = π(y)−1.
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Estimation of the evidence

This leads to the monster

π(y)−1 ≈ 1
N

N∑
i=1

π(y | θ(i))−1

where θ(i) for i ∈ {1, . . . , N} are approximating the
posterior.
By the law of large numbers, this is consistent when
N →∞. Thus

π(y) ≈
(

1
N

N∑
i=1

π(y | θ(i))−1
)−1

is a consistent estimator too.
What’s wrong with it?
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Toy example

Consider a prior

π(θ) = N (θ; 0, σ2),

and a likelihood

π(y | θ) = N (θ; 0, 1).

For σ2 = 1 and σ2 = 102, we estimate Z using importance
sampling from the prior and the harmonic mean estimator.

We plot the obtained estimators as a function of the
number of samples, to monitor convergence.
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Numerical experiment

IS from prior harmonic mean
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Figure: Normal model, prior variance = 1, likelihood variance = 1.
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Numerical experiment
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Figure: Normal model, prior variance = 102, likelihood variance = 1.
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Estimation of the evidence

We can also use rejection sampling to estimate the
evidence.

If we sample from q to target π, accept if

Ui ≤
π̃(Xi)
M̃ q̃(Xi)

where Ui is uniform and Xi ∼ q.

Then the probability of accepting a sample satisfies

P (X accepted) = 1
M

= Zπ

ZqM̃
.

On the toy example, sample from the prior and use M̃ = 1.
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Numerical experiment

0.0

0.1

0.2

0.3

0.4

0.5

0 250 500 750 1000
sample size

Z

Figure: Normal model, prior variance = 1, likelihood variance = 1.
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Numerical experiment
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Figure: Normal model, prior variance = 102, likelihood variance = 1.
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Estimation of the evidence

Beyond those basic schemes, estimating the normalizing
constant is an active area of research.

Skilling. “Nested sampling.” Bayesian inference and
maximum entropy methods in science and engineering 735
(2004): 395-405.

Gelman and Meng. “Simulating normalizing constants:
From importance sampling to bridge sampling to path
sampling.” Statistical science (1998): 163-185.

Del Moral, Doucet and Jasra. ”Sequential monte carlo
samplers.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 68.3 (2006): 411-436.
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Slice Sampling!

Aside from classroom presentation, this is left as an opportunity
for students to read well written paper:

Radford M. Neal “Slice sampling.” The Annals of Statistics,
Vol. 31, No. 3, 705-767 (2003).

1522 citations, and counting...
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