Advanced Simulation - Lecture 10

Patrick Rebeschini

February 14th, 2018

Outline

- Often we have various possible models for the same dataset.
- Sometimes there's an infinity of possible models!
- How to choose between models?

Green (1995), Reversible Jump Markov chain Monte Carlo and Bayesian model determination.

Motivation: Bayesian model choice

- Assume we have a collection of models \mathcal{M}_{k} for $k \in \mathcal{K}$.

■ With data we can learn parameters given each model \mathcal{M}_{k}, but we can also learn about the models.

- Put a prior on models \mathcal{M}_{k}. Within each model, prior $p\left(\theta_{k} \mid \mathcal{M}_{k}\right)$ on the parameters.
- Joint posterior distribution of interest:

$$
\pi\left(\mathcal{M}_{k}, \theta_{k} \mid y\right)=\pi\left(\mathcal{M}_{k} \mid y\right) \pi\left(\theta_{k} \mid y, \mathcal{M}_{k}\right)
$$

which is defined on

$$
\cup_{k \in \mathcal{K}}\left\{\mathcal{M}_{k}\right\} \times \Theta_{k} \equiv \cup_{k \in \mathcal{K}}\{k\} \times \Theta_{k}
$$

Polynomial regression

- Data $\left(x_{i}, y_{i}\right)_{i=1}^{n}$ where $\left(x_{i}, y_{i}\right) \in \mathbb{R} \times \mathbb{R}$.
- Polynomial regression model

$$
\mathcal{M}_{k}: y=\underbrace{\sum_{j=0}^{k} \beta_{j} x^{j}}_{=f(x ; \beta)}+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- If k is too large then

$$
f(x ; \widehat{\beta})=\sum_{j=0}^{k} \widehat{\beta}_{j} x^{j}
$$

where $\widehat{\beta}=\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}, \ldots, \widehat{\beta}_{k}\right)$ is the MLE, will overfit.

Polynomial regression

Figure: As order of the model $M=k$ increases, we overfit.

Bayesian polynomial regression

■ We select $k \in\left\{0, \ldots, M_{\text {max }}\right\}$ and

$$
\mathbb{P}\left(\mathcal{M}_{k}\right)=p_{k}=\frac{1}{M_{\max }+1}
$$

with $\Theta_{k}=\mathbb{R}^{k+1} \times \mathbb{R}^{+}$

$$
p_{k}\left(\beta, \sigma^{2}\right)=\mathcal{N}\left(\beta ; 0, \sigma^{2} I_{k+1}\right) \mathcal{I} \mathcal{G}\left(\sigma^{2} ; 1,1\right)
$$

- In this case, we have analytic expression for

$$
p_{k}\left(y_{1: n}\right)=\int_{\Theta_{k}} p_{k}\left(\beta, \sigma^{2}\right) \prod_{i=1}^{n} \mathcal{N}\left(y_{i} ; f\left(x_{i} ; \beta\right), \sigma^{2}\right) d \beta d \sigma^{2} .
$$

- Bayesian model selection automatically prevents overfitting.

Bayesian Polynomial regression

Figure: $f(x ; \beta)$ for random draws from $p_{M}\left(\beta \mid y_{1: n}\right)$ and evidence $p_{M}\left(y_{1: n}\right)$.

Motivation: mixture models

- Assume the observations Y_{1}, \ldots, Y_{n} come from

$$
\sum_{k=1}^{K} p_{k} \mathcal{N}\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

with $\sum_{k=1}^{K} p_{k}=1$. For any fixed K, the parameters to infer are $\left(p_{1}, \ldots, p_{K-1}, \mu_{1}, \ldots, \mu_{K}, \sigma_{1}^{2}, \ldots, \sigma_{K}^{2}\right)$ of dimension $3 K-1$.

- But what about inference on K ?
- We can put a prior on K, e.g. a Poisson distribution.

■ How do we get the posterior?

Sampling in transdimensional spaces

- Consider a collection of models \mathcal{M}_{k}, for $k \in \mathcal{K} \subset \mathbb{N}$.
- We want to design a Markov chain taking values in $\cup_{k \in \mathcal{K}}\{k\} \times \Theta_{k}$, with the correct joint posterior.
- Reversible jump MCMC is a generalized Metropolis-Hastings using a mixture of kernels.

■ For each k, standard MH kernel from $\{k\} \times \Theta_{k}$ to $\{k\} \times \Theta_{k}$, i.e. standard within-model moves.

■ How to move from $\{k\} \times \Theta_{k}$ to $\left\{k^{\prime}\right\} \times \Theta_{k^{\prime}}$?

Transdimensional moves

We can propose k^{\prime} from $q\left(k^{\prime} \mid k\right)$. Then we need to propose a move from Θ_{k} to $\Theta_{k^{\prime}}$, of dimension d_{k} and $d_{k^{\prime}}$.

- dimension matching: extend the spaces with auxiliary variables.
- Introduce $u_{k \rightarrow k^{\prime}}$ and $u_{k^{\prime} \rightarrow k}$ with distributions $\varphi_{k \rightarrow k^{\prime}}$ and $\varphi_{k^{\prime} \rightarrow k}$ respectively, and such that

$$
d_{k}+\operatorname{dim}\left(u_{k \rightarrow k^{\prime}}\right)=d_{k^{\prime}}+\operatorname{dim}\left(u_{k^{\prime} \rightarrow k}\right)
$$

Transdimensional moves

- Given θ_{k}, we sample $u_{k \rightarrow k^{\prime}} \sim \varphi_{k \rightarrow k^{\prime}}$ and then apply a deterministic mapping to get

$$
\left(\theta_{k^{\prime}}, u_{k^{\prime} \rightarrow k}\right)=G_{k \rightarrow k^{\prime}}\left(\theta_{k}, u_{k \rightarrow k^{\prime}}\right)
$$

- The distributions φ are arbitrary and $G_{k \rightarrow k^{\prime}}$ has to be a diffeomorphism.
- We now have our proposal from Θ_{k} to $\Theta_{k^{\prime}}$. With what probability do we accept it?

Transdimensional moves

- Mimicking Metropolis-Hastings, given x we propose a point x^{\prime} and accept or not with probability $\alpha\left(x \rightarrow x^{\prime}\right)$.
- We want P to be such that, for all A, B :

$$
\int_{x, x^{\prime} \in A \times B} \pi(d x) P\left(x \rightarrow d x^{\prime}\right)=\int_{x, x^{\prime} \in A \times B} \pi\left(d x^{\prime}\right) P\left(x^{\prime} \rightarrow d x\right)
$$

or equivalently

$$
\begin{aligned}
& \int_{x, x^{\prime} \in A \times B} \pi(d x) q\left(x \rightarrow d x^{\prime}\right) \alpha\left(x \rightarrow x^{\prime}\right) \\
& =\int_{x, x^{\prime} \in A \times B} \pi\left(d x^{\prime}\right) q\left(x^{\prime} \rightarrow d x\right) \alpha\left(x^{\prime} \rightarrow x\right)
\end{aligned}
$$

Transdimensional moves

- Subtle point: $\pi(d x) P\left(x, d x^{\prime}\right)$ does not necessarily admit a density with respect to a standard measure.
- We cannot write e.g.

$$
\pi(x) P\left(x, d x^{\prime}\right)=\pi(x) P\left(x, x^{\prime}\right) d x d x^{\prime}
$$

- However $\pi(d x) q\left(x, d x^{\prime}\right)$ can be assumed to be dominated and we write

$$
\pi(x) q\left(x, d x^{\prime}\right)=\pi(x) q\left(x, x^{\prime}\right) d x d x^{\prime}
$$

Transdimensional moves

- First term is:

$$
\int_{x, x^{\prime} \in A \times B} \pi(x) q\left(x \rightarrow x^{\prime}\right) \alpha\left(x \rightarrow x^{\prime}\right) d x d x^{\prime}
$$

- Suppose we propose x^{\prime} by sampling $u \sim \varphi$ and then taking $\left(x^{\prime}, u^{\prime}\right)=G(x, u)$ deterministically. We write $x^{\prime}(x, u)$ and $u^{\prime}(x, u)$.
- The expression becomes

$$
\int_{x, x^{\prime}(x, u) \in A \times B} \pi(x) \varphi(u) \alpha\left(x \rightarrow x^{\prime}(x, u)\right) d x d u
$$

- What is the reverse transition from x^{\prime} to x ? Sample $u^{\prime} \sim \varphi^{\prime}$ and take $(x, u)=G^{-1}\left(x^{\prime}, u^{\prime}\right)$.

Transdimensional moves

- Second term was:

$$
\int_{x, x^{\prime} \in A \times B} \pi\left(x^{\prime}\right) q\left(x^{\prime} \rightarrow x\right) \alpha\left(x^{\prime} \rightarrow x\right) d x d x^{\prime}
$$

- It becomes, with $(x, u)=G^{-1}\left(x^{\prime}, u^{\prime}\right)$:

$$
\int_{x\left(x^{\prime}, u^{\prime}\right), x^{\prime} \in A \times B} \pi\left(x^{\prime}\right) \varphi^{\prime}\left(u^{\prime}\right) \alpha\left(x^{\prime} \rightarrow x\left(x^{\prime}, u^{\prime}\right)\right) d x^{\prime} d u^{\prime}
$$

Let us do a change of variable to get an integral with respect to $d x d u$ instead of $d x^{\prime} d u^{\prime}$:

$$
\int \pi\left(x^{\prime}(x, u)\right) \varphi^{\prime}\left(u^{\prime}(x, u)\right) \alpha\left(x^{\prime}(x, u) \rightarrow x\right)\left|\frac{\partial G(x, u)}{\partial(x, u)}\right| d x d u
$$

Transdimensional moves

- We see that the integrals are equal if

$$
\begin{aligned}
& \pi(x) \varphi(u) \alpha\left(x \rightarrow x^{\prime}(x, u)\right) \\
& =\pi\left(x^{\prime}(x, u)\right) \varphi^{\prime}\left(u^{\prime}(x, u)\right) \alpha\left(x^{\prime}(x, u) \rightarrow x\right)\left|\frac{\partial G(x, u)}{\partial(x, u)}\right|
\end{aligned}
$$

- Thus we can see a valid choice of $\alpha\left(x \rightarrow x^{\prime}\right)$ in :

$$
\alpha\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{\pi\left(x^{\prime}\right) \varphi^{\prime}\left(u^{\prime}\right)}{\pi(x) \varphi(u)}\left|\frac{\partial G(x, u)}{\partial(x, u)}\right|\right)
$$

Transdimensional moves

We can now answer the initial question:
■ How to move from $\{k\} \times \Theta_{k}$ to some other $\left\{k^{\prime}\right\} \times \Theta_{k^{\prime}}$? We start from some $\left(k, \theta_{k}\right)$.

■ Sample $k^{\prime} \sim q\left(k \rightarrow k^{\prime}\right)$, then sample $u_{k \rightarrow k^{\prime}}$ from $\varphi_{k \rightarrow k^{\prime}}$.
■ Compute deterministically $\left(\theta_{k^{\prime}}, u_{k^{\prime} \rightarrow k}\right)=G_{k \rightarrow k^{\prime}}\left(\theta_{k}, u_{k \rightarrow k^{\prime}}\right)$.

- Compute

$$
\alpha_{k \rightarrow k^{\prime}}=\min \left(1, \frac{\pi\left(\theta_{k^{\prime}}\right) \varphi_{k^{\prime} \rightarrow k}\left(u_{k^{\prime} \rightarrow k}\right)}{\pi\left(\theta_{k}\right) \varphi_{k \rightarrow k^{\prime}}\left(u_{k \rightarrow k^{\prime}}\right)} \frac{q\left(k^{\prime} \rightarrow k\right)}{q\left(k \rightarrow k^{\prime}\right)} J_{k \rightarrow k^{\prime}}\left(\theta_{k}, u_{k \rightarrow k^{\prime}}\right)\right)
$$

where

$$
J_{k \rightarrow k^{\prime}}\left(\theta_{k}, u_{k \rightarrow k^{\prime}}\right)=\left|\frac{\partial G_{k \rightarrow k^{\prime}}\left(\theta_{k}, u_{k \rightarrow k^{\prime}}\right)}{\partial\left(\theta_{k}, u_{k \rightarrow k^{\prime}}\right)}\right|
$$

Reversible Jump algorithm

■ Starting with $\left(k^{(0)}, \theta^{(0)}\right)$ iterate for $t=1,2,3, \ldots$
■ With probability β, set $k^{(t)}=k^{(t-1)}$ and do one step of $K_{k^{(t)}}$ leaving $\pi\left(\theta_{k^{(t)}} \mid y, \mathcal{M}_{k^{(t)}}\right)$ invariant.

- With probability $1-\beta$, propose $k^{\prime} \sim q\left(k^{\prime} \mid k^{(t-1)}\right)$.
- Draw a random variable $u_{k^{(t-1)} \rightarrow k^{\prime}} \sim \varphi_{k^{(t-1)} \rightarrow k^{\prime}}$.
- Apply the deterministic mapping $G_{k^{(t-1)} \rightarrow k^{\prime}}$ to get $\theta^{\prime}, u^{\prime}$.
- With "between-models" acceptance probability $a\left(\theta^{(t-1)} \rightarrow \theta^{\prime}\right):$
accept, i.e. set $\theta^{(t)}=\theta^{\prime}, k^{(t)}=k^{\prime}$, otherwise reject, i.e. set $\theta^{(t)}=\theta^{(t-1)}, k^{(t)}=k^{(t-1)}$.

Toy example

- Two models, uniform prior on models $p\left(\mathcal{M}_{1}\right)=p\left(\mathcal{M}_{2}\right)=\frac{1}{2}$.
- In model $\mathcal{M}_{1}, \theta \in \mathbb{R}$ and we can evaluate pointwise

$$
\operatorname{posterior}_{1}(\theta) \propto p\left(\theta \mid \mathcal{M}_{1}\right) \mathcal{L}\left(\theta \mid \mathcal{M}_{1}\right)=\exp \left(-\frac{1}{2}(\theta)^{2}\right)
$$

■ In model $\mathcal{M}_{2}, \theta \in \mathbb{R}^{2}$ and we can evaluate pointwise
$\operatorname{posterior}_{2}(\theta) \propto p\left(\theta \mid \mathcal{M}_{2}\right) \mathcal{L}\left(\theta \mid \mathcal{M}_{2}\right)=\exp \left(-\frac{1}{2}\left(\theta_{1}\right)^{2}-\frac{1}{2}\left(\theta_{2}\right)^{2}\right)$

Toy situation

- In terms of model comparison, we should find

$$
\begin{aligned}
\frac{p\left(\mathcal{M}_{2} \mid y\right)}{p\left(\mathcal{M}_{1} \mid y\right)} & =\frac{p\left(y \mid \mathcal{M}_{2}\right) p\left(\mathcal{M}_{2}\right)}{p\left(y \mid \mathcal{M}_{1}\right) p\left(\mathcal{M}_{1}\right)} \\
& =\frac{\int_{\mathbb{R}^{2}} p\left(\theta \mid \mathcal{M}_{2}\right) \mathcal{L}\left(\theta \mid \mathcal{M}_{2}\right) d \theta}{\int_{\mathbb{R}} p\left(\theta \mid \mathcal{M}_{1}\right) \mathcal{L}\left(\theta \mid \mathcal{M}_{1}\right) d \theta} \times \frac{\frac{1}{2}}{\frac{1}{2}} \\
& =\frac{2 \pi}{\sqrt{2 \pi}} \\
& =\sqrt{2 \pi} \approx 2.5066
\end{aligned}
$$

■ In terms of parameters, in model $\mathcal{M}_{1}, \theta \sim \mathcal{N}(0,1)$ and in $\operatorname{model} \mathcal{M}_{2}, \theta \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$.

Reversible Jump algorithm

We need to construct various Markov kernels.

■ A Markov kernel "within \mathcal{M}_{k} " for each model \mathcal{M}_{k}.

Toy example: introduce a Metropolis Hastings with random walk proposal, of variance σ^{2} for model \mathcal{M}_{1} and Σ for model \mathcal{M}_{2}.

- A Markov kernel to move between models, i.e. for each pair k, proposing k^{\prime} and proposing to move parameters of \mathcal{M}_{k} to parameters of $\mathcal{M}_{k^{\prime}}$.
Toy example: introduce K_{12} moving a parameter $\theta \in \mathbb{R}$ to a parameter $\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{2}$, and introduce K_{21} moving a parameter $\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{2}$ to a parameter $\theta \in \mathbb{R}$.

Toy example

For K_{12} do the following.

- Sample u from $\mathcal{C}(0,1)$, a standard Cauchy (dimension matching).

■ Map deterministically $\left(\theta_{1}, \theta_{2}\right)=G_{1 \rightarrow 2}(\theta, u)=(\theta, u)$, with Jacobian equal to 1.

- Compute

$$
\alpha_{1 \rightarrow 2}=\min \left(1, \frac{\exp \left(-0.5 \theta^{2}-0.5 u^{2}\right)}{\exp \left(-0.5 \theta^{2}\right) \mathcal{C}(u ; 0,1)}\right)
$$

Indeed the Jacobian is equal to 1 , the priors on \mathcal{M}_{1} and \mathcal{M}_{2} are identical, and $q\left(k^{\prime} \mid k\right)=q\left(k \mid k^{\prime}\right)$.

- Accept θ_{1}, θ_{2} or stay at θ.

Toy example

For K_{21} do the following.

■ Map deterministically $(\theta, u)=G_{2 \rightarrow 1}\left(\theta_{1}, \theta_{2}\right)=\left(\theta_{1}, \theta_{2}\right)$, with Jacobian equal to 1.

- Compute

$$
\alpha_{2 \rightarrow 1}=\min \left(1, \frac{\exp \left(-0.5 \theta_{1}^{2}\right) \mathcal{C}\left(\theta_{2} ; 0,1\right)}{\exp \left(-0.5 \theta_{1}^{2}-0.5 \theta_{2}^{2}\right)}\right)
$$

Indeed the Jacobian is equal to 1 , the priors on \mathcal{M}_{1} and \mathcal{M}_{2} are identical, and $q\left(k^{\prime} \mid k\right)=q\left(k \mid k^{\prime}\right)$.

- Accept θ or stay at $\left(\theta_{1}, \theta_{2}\right)$.

Reversible Jump algorithm

- Introduce a probability of performing a "between-model" move at each step, say $\beta \in[0,1]$.
- Given the current state of the chain k_{t}, θ_{t} at time t :
- with probability β, between-model move: draw
(k_{t+1}, θ_{t+1}) by drawing $k^{\prime} \sim q\left(k^{\prime} \mid k\right)$, dimension matching, deterministic mapping, RJ acceptance ratio...
- with probability $1-\beta$, within-model move: standard Metropolis-Hastings in the current model.

Results

Figure: Parameter θ in model \mathcal{M}_{1}.

Results

Figure: Parameter $\left(\theta_{1}, \theta_{2}\right)$ in model \mathcal{M}_{2}.

Results

Figure: Model index k along iterations. Probability of accepting model jumps: $\approx 43.6 \%$. The number of visits in \mathcal{M}_{2} divided by the number of visits in \mathcal{M}_{1} equals ≈ 2.39, approximating the Bayes factor of ≈ 2.51.

Results

If instead of $\mathcal{C}(0,1)$ we use $\mathcal{N}(3,1)$ for the dimension matching variable.

Figure: Model index k along iterations. Probability of accepting model jumps: $\approx 12.2 \%$. Bayes factor approximated by ≈ 2.21.

Results

If instead of $\mathcal{C}(0,1)$ we use $\mathcal{N}(5,1)$ for the dimension matching variable.

Figure: Model index k along iterations. Probability of accepting model jumps: $\approx 1.43 \%$. Bayes factor approximated by ≈ 2.31 (not so bad!).

Reversible Jump algorithm: conclusion

- Probably the most ambitious MCMC algorithm, aiming at parameter estimation and model choice in one run.

■ In general it's hard to design auxiliary variables for dimension matching and deterministic mappings such that the acceptance rate of between-model moves is decent.

- Transdimensional samplers constitute an on-going research area, see for instance:
Annealed Importance Sampling Reversible Jump MCMC Algorithms, by Karagiannis and Andrieu, 2013.

