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Outline

Often we have various possible models for the same dataset.

Sometimes there’s an infinity of possible models!

How to choose between models?

Green (1995), Reversible Jump Markov chain Monte Carlo and
Bayesian model determination.
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Motivation: Bayesian model choice

Assume we have a collection of models Mk for k ∈ K.

With data we can learn parameters given each model Mk,
but we can also learn about the models.

Put a prior on models Mk. Within each model, prior
p(θk | Mk) on the parameters.

Joint posterior distribution of interest:

π(Mk, θk | y) = π(Mk | y)π(θk | y,Mk)

which is defined on

∪k∈K{Mk} ×Θk ≡ ∪k∈K{k} ×Θk.
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Polynomial regression

Data (xi, yi)ni=1 where (xi, yi) ∈ R× R.
Polynomial regression model

Mk : y =
k∑
j=0

βjx
j

︸ ︷︷ ︸
=f(x;β)

+ ε, ε ∼ N
(
0, σ2

)
.

If k is too large then

f
(
x; β̂

)
=

k∑
j=0

β̂jx
j

where β̂ =
(
β̂0, β̂1, ..., β̂k

)
is the MLE, will overfit.
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Polynomial regression
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Figure: As order of the model M = k increases, we overfit.
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Bayesian polynomial regression

We select k ∈ {0, ...,Mmax} and

P (Mk) = pk = 1
Mmax + 1

with Θk = Rk+1 × R+

pk
(
β, σ2

)
= N

(
β; 0, σ2Ik+1

)
IG
(
σ2; 1, 1

)
.

In this case, we have analytic expression for

pk (y1:n) =
∫

Θk

pk
(
β, σ2

) n∏
i=1
N
(
yi; f (xi;β) , σ2

)
dβdσ2.

Bayesian model selection automatically prevents overfitting.
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Bayesian Polynomial regression
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Figure: f (x;β) for random draws from pM (β| y1:n) and evidence
pM (y1:n).
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Motivation: mixture models

Assume the observations Y1, . . . , Yn come from

K∑
k=1

pkN (µk, σ2
k)

with
∑K
k=1 pk = 1. For any fixed K, the parameters to infer

are (p1, . . . , pK−1, µ1, . . . , µK , σ
2
1, . . . , σ

2
K) of dimension

3K − 1.

But what about inference on K?

We can put a prior on K, e.g. a Poisson distribution.

How do we get the posterior?
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Sampling in transdimensional spaces

Consider a collection of models Mk, for k ∈ K ⊂ N.

We want to design a Markov chain taking values in
∪k∈K{k} ×Θk, with the correct joint posterior.

Reversible jump MCMC is a generalized
Metropolis-Hastings using a mixture of kernels.

For each k, standard MH kernel from {k} ×Θk to
{k} ×Θk, i.e. standard within-model moves.

How to move from {k} ×Θk to {k′} ×Θk′?
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Transdimensional moves

We can propose k′ from q(k′ | k). Then we need to propose a
move from Θk to Θk′ , of dimension dk and dk′ .

dimension matching: extend the spaces with auxiliary
variables.

Introduce uk→k′ and uk′→k with distributions ϕk→k′ and
ϕk′→k respectively, and such that

dk + dim(uk→k′) = dk′ + dim(uk′→k).
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Transdimensional moves

Given θk, we sample uk→k′ ∼ ϕk→k′ and then apply a
deterministic mapping to get

(θk′ , uk′→k) = Gk→k′(θk, uk→k′).

The distributions ϕ are arbitrary and Gk→k′ has to be a
diffeomorphism.

We now have our proposal from Θk to Θk′ . With what
probability do we accept it?
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Transdimensional moves

Mimicking Metropolis-Hastings, given x we propose a point
x′ and accept or not with probability α(x→ x′).
We want P to be such that, for all A,B:∫
x,x′∈A×B

π(dx)P (x→ dx′) =
∫
x,x′∈A×B

π(dx′)P (x′ → dx)

or equivalently∫
x,x′∈A×B

π(dx)q(x→ dx′)α(x→ x′)

=
∫
x,x′∈A×B

π(dx′)q(x′ → dx)α(x′ → x)
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Transdimensional moves

Subtle point: π(dx)P (x, dx′) does not necessarily admit a
density with respect to a standard measure.

We cannot write e.g.

π(x)P (x, dx′) = π(x)P (x, x′)dxdx′

However π(dx)q(x, dx′) can be assumed to be dominated
and we write

π(x)q(x, dx′) = π(x)q(x, x′)dxdx′
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Transdimensional moves

First term is:∫
x,x′∈A×B

π(x)q(x→ x′)α(x→ x′)dxdx′

Suppose we propose x′ by sampling u ∼ ϕ and then taking
(x′, u′) = G(x, u) deterministically. We write x′(x, u) and
u′(x, u).
The expression becomes∫

x,x′(x,u)∈A×B
π(x)ϕ(u)α(x→ x′(x, u))dxdu

What is the reverse transition from x′ to x? Sample
u′ ∼ ϕ′ and take (x, u) = G−1(x′, u′).
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Transdimensional moves

Second term was:∫
x,x′∈A×B

π(x′)q(x′ → x)α(x′ → x)dxdx′

It becomes, with (x, u) = G−1(x′, u′):∫
x(x′,u′),x′∈A×B

π(x′)ϕ′(u′)α(x′ → x(x′, u′))dx′du′

Let us do a change of variable to get an integral with
respect to dxdu instead of dx′du′:∫
·
π(x′(x, u))ϕ′(u′(x, u))α(x′(x, u)→ x)

∣∣∣∣∂G(x, u)
∂(x, u)

∣∣∣∣ dxdu
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Transdimensional moves

We see that the integrals are equal if

π(x)ϕ(u)α(x→ x′(x, u))

= π(x′(x, u))ϕ′(u′(x, u))α(x′(x, u)→ x)
∣∣∣∣∂G(x, u)
∂(x, u)

∣∣∣∣
Thus we can see a valid choice of α(x→ x′) in :

α(x→ x′) = min
(

1, π(x′)ϕ′(u′)
π(x)ϕ(u)

∣∣∣∣∂G(x, u)
∂(x, u)

∣∣∣∣)
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Transdimensional moves

We can now answer the initial question:

How to move from {k} ×Θk to some other {k′} ×Θk′? We
start from some (k, θk).

Sample k′ ∼ q(k → k′), then sample uk→k′ from ϕk→k′ .

Compute deterministically (θk′ , uk′→k) = Gk→k′(θk, uk→k′).

Compute

αk→k′ = min
(

1, π(θk′)ϕk′→k(uk′→k)
π(θk)ϕk→k′(uk→k′)

q(k′ → k)
q(k → k′)Jk→k

′(θk, uk→k′)
)

where

Jk→k′(θk, uk→k′) =
∣∣∣∣∂Gk→k′(θk, uk→k′)∂(θk, uk→k′)

∣∣∣∣ .
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Reversible Jump algorithm

Starting with
(
k(0), θ(0)

)
iterate for t = 1, 2, 3, ...

With probability β, set k(t) = k(t−1) and do one step of
Kk(t) leaving π(θk(t) | y,Mk(t)) invariant.

With probability 1− β, propose k′ ∼ q(k′ | k(t−1)).
Draw a random variable uk(t−1)→k′ ∼ ϕk(t−1)→k′ .
Apply the deterministic mapping Gk(t−1)→k′ to get
θ′, u′.
With “between-models” acceptance probability
a(θ(t−1) → θ′):
accept, i.e. set θ(t) = θ′, k(t) = k′,
otherwise reject, i.e. set θ(t) = θ(t−1), k(t) = k(t−1).
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Toy example

Two models, uniform prior on models p(M1) = p(M2) = 1
2 .

In model M1, θ ∈ R and we can evaluate pointwise

posterior1(θ) ∝ p(θ | M1)L(θ | M1) = exp
(
−1

2 (θ)2
)

In model M2, θ ∈ R2 and we can evaluate pointwise

posterior2(θ) ∝ p(θ | M2)L(θ | M2) = exp
(
−1

2 (θ1)2 − 1
2 (θ2)2

)
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Toy situation

In terms of model comparison, we should find

p(M2 | y)
p(M1 | y) = p(y | M2)p(M2)

p(y | M1)p(M1)

=
∫
R2 p(θ | M2)L(θ | M2)dθ∫
R p(θ | M1)L(θ | M1)dθ ×

1
2
1
2

= 2π√
2π

=
√

2π ≈ 2.5066

In terms of parameters, in model M1, θ ∼ N (0, 1) and in

model M2, θ ∼ N
((

0
0

)
,

(
1 0
0 1

))
.
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Reversible Jump algorithm

We need to construct various Markov kernels.

A Markov kernel “within Mk” for each model Mk.

Toy example: introduce a Metropolis Hastings with
random walk proposal, of variance σ2 for model M1 and Σ
for model M2.

A Markov kernel to move between models, i.e. for each pair
k, proposing k′ and proposing to move parameters of Mk

to parameters of Mk′ .
Toy example: introduce K12 moving a parameter θ ∈ R
to a parameter (θ1, θ2) ∈ R2, and introduce K21 moving a
parameter (θ1, θ2) ∈ R2 to a parameter θ ∈ R.
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Toy example

For K12 do the following.

Sample u from C(0, 1), a standard Cauchy (dimension
matching).

Map deterministically (θ1, θ2) = G1→2(θ, u) = (θ, u), with
Jacobian equal to 1.

Compute

α1→2 = min
(

1, exp(−0.5θ2 − 0.5u2)
exp(−0.5θ2)C(u; 0, 1)

)

Indeed the Jacobian is equal to 1, the priors on M1 and
M2 are identical, and q(k′ | k) = q(k | k′).

Accept θ1, θ2 or stay at θ.
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Toy example

For K21 do the following.

Map deterministically (θ, u) = G2→1(θ1, θ2) = (θ1, θ2), with
Jacobian equal to 1.

Compute

α2→1 = min
(

1, exp(−0.5θ2
1)C(θ2; 0, 1)

exp(−0.5θ2
1 − 0.5θ2

2)

)

Indeed the Jacobian is equal to 1, the priors on M1 and
M2 are identical, and q(k′ | k) = q(k | k′).

Accept θ or stay at (θ1, θ2).
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Reversible Jump algorithm

Introduce a probability of performing a “between-model”
move at each step, say β ∈ [0, 1].

Given the current state of the chain kt, θt at time t:

- with probability β, between-model move: draw
(kt+1, θt+1) by drawing k′ ∼ q(k′ | k), dimension matching,
deterministic mapping, RJ acceptance ratio. . .

- with probability 1− β, within-model move: standard
Metropolis-Hastings in the current model.
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Results
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Figure: Parameter θ in model M1.
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Results
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Figure: Parameter (θ1, θ2) in model M2.
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Results
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Figure: Model index k along iterations. Probability of accepting
model jumps: ≈ 43.6%. The number of visits in M2 divided by the
number of visits in M1 equals ≈ 2.39, approximating the Bayes factor
of ≈ 2.51.
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Results

If instead of C(0, 1) we use N (3, 1) for the dimension matching
variable.
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Figure: Model index k along iterations. Probability of accepting
model jumps: ≈ 12.2%. Bayes factor approximated by ≈ 2.21.
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Results

If instead of C(0, 1) we use N (5, 1) for the dimension matching
variable.
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Figure: Model index k along iterations. Probability of accepting model
jumps: ≈ 1.43%. Bayes factor approximated by ≈ 2.31 (not so bad!).
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Reversible Jump algorithm: conclusion

Probably the most ambitious MCMC algorithm, aiming at
parameter estimation and model choice in one run.

In general it’s hard to design auxiliary variables for
dimension matching and deterministic mappings such that
the acceptance rate of between-model moves is decent.

Transdimensional samplers constitute an on-going research
area, see for instance:
Annealed Importance Sampling Reversible Jump MCMC
Algorithms, by Karagiannis and Andrieu, 2013.
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