Advanced Simulation - Lecture 10

Patrick Rebeschini

February 14th, 2018

Patrick Rebeschini

• Often we have various possible models for the same dataset.

■ Sometimes there's an infinity of possible models!

■ How to choose between models?

Green (1995), Reversible Jump Markov chain Monte Carlo and Bayesian model determination.

Motivation: Bayesian model choice

- Assume we have a collection of models \mathcal{M}_k for $k \in \mathcal{K}$.
- With data we can learn parameters given each model \mathcal{M}_k , but we can also learn about the models.
- Put a prior on models \mathcal{M}_k . Within each model, prior $p(\theta_k \mid \mathcal{M}_k)$ on the parameters.
- Joint posterior distribution of interest:

$$\pi(\mathcal{M}_k, \theta_k \mid y) = \pi(\mathcal{M}_k \mid y)\pi(\theta_k \mid y, \mathcal{M}_k)$$

which is defined on

$$\cup_{k\in\mathcal{K}}\{\mathcal{M}_k\}\times\Theta_k\equiv\cup_{k\in\mathcal{K}}\{k\}\times\Theta_k.$$

Polynomial regression

• Data $(x_i, y_i)_{i=1}^n$ where $(x_i, y_i) \in \mathbb{R} \times \mathbb{R}$.

Polynomial regression model

$$\mathcal{M}_{k}: y = \underbrace{\sum_{j=0}^{k} \beta_{j} x^{j}}_{=f(x;\beta)} + \varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right).$$

• If k is too large then

$$f\left(x;\widehat{\beta}\right) = \sum_{j=0}^{k} \widehat{\beta}_j x^j$$

where $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k)$ is the MLE, will overfit.

Polynomial regression

Figure: As order of the model M = k increases, we overfit.

Bayesian polynomial regression

• We select $k \in \{0, ..., M_{\max}\}$ and

$$\mathbb{P}\left(\mathcal{M}_{k}\right) = p_{k} = \frac{1}{M_{\max} + 1}$$

with
$$\Theta_k = \mathbb{R}^{k+1} \times \mathbb{R}^+$$

 $p_k\left(\beta, \sigma^2\right) = \mathcal{N}\left(\beta; 0, \sigma^2 I_{k+1}\right) \mathcal{IG}\left(\sigma^2; 1, 1\right).$

■ In this case, we have analytic expression for

$$p_{k}(y_{1:n}) = \int_{\Theta_{k}} p_{k}\left(\beta,\sigma^{2}\right) \prod_{i=1}^{n} \mathcal{N}\left(y_{i};f\left(x_{i};\beta\right),\sigma^{2}\right) d\beta d\sigma^{2}.$$

Bayesian model selection automatically prevents overfitting.

Bayesian Polynomial regression

Figure: $f(x;\beta)$ for random draws from $p_M(\beta|y_{1:n})$ and evidence $p_M(y_{1:n})$.

• Assume the observations Y_1, \ldots, Y_n come from

$$\sum_{k=1}^{K} p_k \mathcal{N}(\mu_k, \sigma_k^2)$$

with $\sum_{k=1}^{K} p_k = 1$. For any fixed K, the parameters to infer are $(p_1, \ldots, p_{K-1}, \mu_1, \ldots, \mu_K, \sigma_1^2, \ldots, \sigma_K^2)$ of dimension 3K - 1.

- But what about inference on K?
- We can put a prior on K, e.g. a Poisson distribution.
- How do we get the posterior?

Sampling in transdimensional spaces

- Consider a collection of models \mathcal{M}_k , for $k \in \mathcal{K} \subset \mathbb{N}$.
- We want to design a Markov chain taking values in $\bigcup_{k \in \mathcal{K}} \{k\} \times \Theta_k$, with the correct joint posterior.
- Reversible jump MCMC is a generalized Metropolis-Hastings using a mixture of kernels.
- For each k, standard MH kernel from $\{k\} \times \Theta_k$ to $\{k\} \times \Theta_k$, i.e. standard within-model moves.
- How to move from $\{k\} \times \Theta_k$ to $\{k'\} \times \Theta_{k'}$?

We can propose k' from q(k' | k). Then we need to propose a move from Θ_k to $\Theta_{k'}$, of dimension d_k and $d_{k'}$.

dimension matching: extend the spaces with auxiliary variables.

• Introduce $u_{k\to k'}$ and $u_{k'\to k}$ with distributions $\varphi_{k\to k'}$ and $\varphi_{k'\to k}$ respectively, and such that

$$d_k + \dim(u_{k \to k'}) = d_{k'} + \dim(u_{k' \to k}).$$

Given θ_k , we sample $u_{k \to k'} \sim \varphi_{k \to k'}$ and then apply a deterministic mapping to get

$$(\theta_{k'}, u_{k' \to k}) = G_{k \to k'}(\theta_k, u_{k \to k'}).$$

- The distributions φ are arbitrary and $G_{k \to k'}$ has to be a diffeomorphism.
- We now have our proposal from Θ_k to $\Theta_{k'}$. With what probability do we accept it?

Transdimensional moves

- Mimicking Metropolis-Hastings, given x we propose a point x' and accept or not with probability $\alpha(x \to x')$.
- We want P to be such that, for all A, B:

$$\int_{x,x'\in A\times B} \pi(dx)P(x\to dx') = \int_{x,x'\in A\times B} \pi(dx')P(x'\to dx)$$

or equivalently

$$\int_{x,x'\in A\times B} \pi(dx)q(x\to dx')\alpha(x\to x')$$
$$=\int_{x,x'\in A\times B} \pi(dx')q(x'\to dx)\alpha(x'\to x)$$

- Subtle point: $\pi(dx)P(x, dx')$ does not necessarily admit a density with respect to a standard measure.
- We cannot write e.g.

$$\pi(x)P(x,dx') = \pi(x)P(x,x')dxdx'$$

• However $\pi(dx)q(x, dx')$ can be assumed to be dominated and we write

$$\pi(x)q(x,dx') = \pi(x)q(x,x')dxdx'$$

Transdimensional moves

• First term is:

$$\int_{x,x'\in A\times B} \pi(x)q(x\to x')\alpha(x\to x')dxdx'$$

- Suppose we propose x' by sampling $u \sim \varphi$ and then taking (x', u') = G(x, u) deterministically. We write x'(x, u) and u'(x, u).
- The expression becomes

$$\int_{x,x'(x,u)\in A\times B} \pi(x)\varphi(u)\alpha(x\to x'(x,u))dxdu$$

• What is the reverse transition from x' to x? Sample $u' \sim \varphi'$ and take $(x, u) = G^{-1}(x', u')$.

Transdimensional moves

Second term was:

$$\int_{x,x'\in A\times B} \pi(x')q(x'\to x)\alpha(x'\to x)dxdx'$$

• It becomes, with $(x, u) = G^{-1}(x', u')$:

$$\int_{x(x',u'),x'\in A\times B} \pi(x')\varphi'(u')\alpha(x'\to x(x',u'))dx'du'$$

Let us do a change of variable to get an integral with respect to dxdu instead of dx'du':

$$\int_{\cdot} \pi(x'(x,u))\varphi'(u'(x,u))\alpha(x'(x,u)\to x) \left|\frac{\partial G(x,u)}{\partial(x,u)}\right| dxdu$$

• We see that the integrals are equal if

$$\pi(x)\varphi(u)\alpha(x \to x'(x,u))$$

= $\pi(x'(x,u))\varphi'(u'(x,u))\alpha(x'(x,u) \to x) \left| \frac{\partial G(x,u)}{\partial (x,u)} \right|$

• Thus we can see a valid choice of $\alpha(x \to x')$ in :

$$\alpha(x \to x') = \min\left(1, \frac{\pi(x')\varphi'(u')}{\pi(x)\varphi(u)} \left| \frac{\partial G(x,u)}{\partial(x,u)} \right|\right)$$

We can now answer the initial question:

- How to move from $\{k\} \times \Theta_k$ to some other $\{k'\} \times \Theta_{k'}$? We start from some (k, θ_k) .
- Sample $k' \sim q(k \to k')$, then sample $u_{k \to k'}$ from $\varphi_{k \to k'}$.
- Compute deterministically $(\theta_{k'}, u_{k' \to k}) = G_{k \to k'}(\theta_k, u_{k \to k'}).$
- Compute

$$\alpha_{k \to k'} = \min\left(1, \frac{\pi(\theta_{k'})\varphi_{k' \to k}(u_{k' \to k})}{\pi(\theta_k)\varphi_{k \to k'}(u_{k \to k'})} \frac{q(k' \to k)}{q(k \to k')} J_{k \to k'}(\theta_k, u_{k \to k'})\right)$$

where

$$J_{k \to k'}(\theta_k, u_{k \to k'}) = \left| \frac{\partial G_{k \to k'}(\theta_k, u_{k \to k'})}{\partial (\theta_k, u_{k \to k'})} \right|.$$

Reversible Jump algorithm

• Starting with $(k^{(0)}, \theta^{(0)})$ iterate for t = 1, 2, 3, ...

- With probability β , set $k^{(t)} = k^{(t-1)}$ and do one step of $K_{k^{(t)}}$ leaving $\pi(\theta_{k^{(t)}} | y, \mathcal{M}_{k^{(t)}})$ invariant.
- With probability 1β , propose $k' \sim q(k' \mid k^{(t-1)})$.
 - Draw a random variable $u_{k^{(t-1)} \to k'} \sim \varphi_{k^{(t-1)} \to k'}$.
 - Apply the deterministic mapping $G_{k^{(t-1)} \to k'}$ to get θ', u' .
 - With "between-models" acceptance probability $a(\theta^{(t-1)} \rightarrow \theta')$: accept, i.e. set $\theta^{(t)} = \theta', k^{(t)} = k'$, otherwise reject, i.e. set $\theta^{(t)} = \theta^{(t-1)}, k^{(t)} = k^{(t-1)}$.

• Two models, uniform prior on models $p(\mathcal{M}_1) = p(\mathcal{M}_2) = \frac{1}{2}$.

• In model $\mathcal{M}_1, \theta \in \mathbb{R}$ and we can evaluate pointwise

posterior₁(
$$\theta$$
) $\propto p(\theta \mid \mathcal{M}_1)\mathcal{L}(\theta \mid \mathcal{M}_1) = \exp\left(-\frac{1}{2}(\theta)^2\right)$

• In model $\mathcal{M}_2, \theta \in \mathbb{R}^2$ and we can evaluate pointwise

posterior₂(
$$\theta$$
) $\propto p(\theta \mid \mathcal{M}_2)\mathcal{L}(\theta \mid \mathcal{M}_2) = \exp\left(-\frac{1}{2}(\theta_1)^2 - \frac{1}{2}(\theta_2)^2\right)$

■ In terms of model comparison, we should find

$$\frac{p(\mathcal{M}_2 \mid y)}{p(\mathcal{M}_1 \mid y)} = \frac{p(y \mid \mathcal{M}_2)p(\mathcal{M}_2)}{p(y \mid \mathcal{M}_1)p(\mathcal{M}_1)}$$
$$= \frac{\int_{\mathbb{R}^2} p(\theta \mid \mathcal{M}_2)\mathcal{L}(\theta \mid \mathcal{M}_2)d\theta}{\int_{\mathbb{R}} p(\theta \mid \mathcal{M}_1)\mathcal{L}(\theta \mid \mathcal{M}_1)d\theta} \times \frac{\frac{1}{2}}{\frac{1}{2}}$$
$$= \frac{2\pi}{\sqrt{2\pi}}$$
$$= \sqrt{2\pi} \approx 2.5066$$

• In terms of parameters, in model \mathcal{M}_1 , $\theta \sim \mathcal{N}(0, 1)$ and in model \mathcal{M}_2 , $\theta \sim \mathcal{N}\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}\right)$.

We need to construct various Markov kernels.

• A Markov kernel "within \mathcal{M}_k " for each model \mathcal{M}_k .

Toy example: introduce a Metropolis Hastings with random walk proposal, of variance σ^2 for model \mathcal{M}_1 and Σ for model \mathcal{M}_2 .

• A Markov kernel to move between models, i.e. for each pair k, proposing k' and proposing to move parameters of \mathcal{M}_k to parameters of $\mathcal{M}_{k'}$.

Toy example: introduce K_{12} moving a parameter $\theta \in \mathbb{R}$ to a parameter $(\theta_1, \theta_2) \in \mathbb{R}^2$, and introduce K_{21} moving a parameter $(\theta_1, \theta_2) \in \mathbb{R}^2$ to a parameter $\theta \in \mathbb{R}$.

For K_{12} do the following.

- Sample u from $\mathcal{C}(0, 1)$, a standard Cauchy (dimension matching).
- Map deterministically $(\theta_1, \theta_2) = G_{1 \to 2}(\theta, u) = (\theta, u)$, with Jacobian equal to 1.

Compute

$$\alpha_{1\to 2} = \min\left(1, \frac{\exp(-0.5\theta^2 - 0.5u^2)}{\exp(-0.5\theta^2)\mathcal{C}(u; 0, 1)}\right)$$

Indeed the Jacobian is equal to 1, the priors on \mathcal{M}_1 and \mathcal{M}_2 are identical, and $q(k' \mid k) = q(k \mid k')$.

• Accept
$$\theta_1, \theta_2$$
 or stay at θ .

For K_{21} do the following.

• Map deterministically $(\theta, u) = G_{2 \to 1}(\theta_1, \theta_2) = (\theta_1, \theta_2)$, with Jacobian equal to 1.

Compute

$$\alpha_{2\to 1} = \min\left(1, \frac{\exp(-0.5\theta_1^2)\mathcal{C}(\theta_2; 0, 1)}{\exp(-0.5\theta_1^2 - 0.5\theta_2^2)}\right)$$

Indeed the Jacobian is equal to 1, the priors on \mathcal{M}_1 and \mathcal{M}_2 are identical, and $q(k' \mid k) = q(k \mid k')$.

• Accept θ or stay at (θ_1, θ_2) .

- Introduce a probability of performing a "between-model" move at each step, say $\beta \in [0, 1]$.
- Given the current state of the chain k_t, θ_t at time t:

- with probability β , between-model move: draw (k_{t+1}, θ_{t+1}) by drawing $k' \sim q(k' \mid k)$, dimension matching, deterministic mapping, RJ acceptance ratio...

- with probability $1 - \beta$, within-model move: standard Metropolis-Hastings in the current model.

Figure: Parameter θ in model \mathcal{M}_1 .

Figure: Parameter (θ_1, θ_2) in model \mathcal{M}_2 .

Figure: Model index k along iterations. Probability of accepting model jumps: $\approx 43.6\%$. The number of visits in \mathcal{M}_2 divided by the number of visits in \mathcal{M}_1 equals ≈ 2.39 , approximating the Bayes factor of ≈ 2.51 .

If instead of $\mathcal{C}(0,1)$ we use $\mathcal{N}(3,1)$ for the dimension matching variable.

Figure: Model index k along iterations. Probability of accepting model jumps: $\approx 12.2\%$. Bayes factor approximated by ≈ 2.21 .

If instead of $\mathcal{C}(0,1)$ we use $\mathcal{N}(5,1)$ for the dimension matching variable.

Figure: Model index k along iterations. Probability of accepting model jumps: $\approx 1.43\%$. Bayes factor approximated by ≈ 2.31 (not so bad!).

Reversible Jump algorithm: conclusion

- Probably the most ambitious MCMC algorithm, aiming at parameter estimation and model choice in one run.
- In general it's hard to design auxiliary variables for dimension matching and deterministic mappings such that the acceptance rate of between-model moves is decent.
- Transdimensional samplers constitute an on-going research area, see for instance: Annealed Importance Sampling Reversible Jump MCMC Algorithms, by Karagiannis and Andrieu, 2013.