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m Often we have various possible models for the same dataset.
m Sometimes there’s an infinity of possible models!

m How to choose between models?

Green (1995), Reversible Jump Markov chain Monte Carlo and
Bayesian model determination.

Patrick Rebeschini Lecture 10 2/ 30



Motivation: Bayesian model choice

m Assume we have a collection of models My, for k € K.

m With data we can learn parameters given each model My,
but we can also learn about the models.

m Put a prior on models M. Within each model, prior
p(0k | My) on the parameters.

m Joint posterior distribution of interest:
T(Mp, Ok | y) = m1(My | y)7(0k | y, My)
which is defined on

UkeIC{Mk} X O = UkeK{k} X Op.
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Polynomial regression

m Data (z;,y;);—, where (z;,y,) € R xR.

m Polynomial regression model

k
My iy = Zﬁjxj+e, sw/\/’(O,aQ).
j=0
=f(z;8)

m If £ is too large then
f(wsB) = Bja?
§=0

where B = (30,31, e Bk) is the MLE, will overfit.
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ynomial regression
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Bayesian polynomial regression

1

PMg) =pr =7
( k) Pr MmaXJFl

with O = RF x RT
pi (B.0%) = N (8:0,0%I11) G (0%1,1) .
m In this case, we have analytic expression for

pilva) = [ e (8.0 TI (i f (@128)..0?) dida®.
k i=1

m Bayesian model selection automatically prevents overfitting.
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Bayesian Polynomial regression

Model Evidence

Figure: f (x; ) for random draws from pas (S| y1.,) and evidence
Pm (yl:n)-
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Motivation: mixture models

m Assume the observations Y7, ...,Y, come from

K
> o (ks o)

k=1

with Zszl pr = 1. For any fixed K, the parameters to infer
are (Piy ..., DK—1s M1, -« LK, 0’%, .. ,0’%() of dimension
3K — 1.

m But what about inference on K7

m We can put a prior on K, e.g. a Poisson distribution.

m How do we get the posterior?
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Sampling in transdimensional spaces

m Consider a collection of models My, for k € K C N.

m We want to design a Markov chain taking values in
Ukexc{k} X Ok, with the correct joint posterior.

Reversible jump MCMC is a generalized
Metropolis-Hastings using a mixture of kernels.

For each k, standard MH kernel from {k} x ©j to
{k} x ©, i.e. standard within-model moves.

m How to move from {k} x O to {k'} x Op/?
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Transdimensional moves

We can propose k' from q(k’ | k). Then we need to propose a
move from Oy to Oy, of dimension di and dj.

m dimension matching: extend the spaces with auxiliary
variables.

m Introduce uy_,p and ug g with distributions ¢, and
Yk respectively, and such that

dy + dim(uk_m/) =d + dim(uk/_m).
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Transdimensional moves

m Given 60y, we sample ug i ~ @p_p and then apply a
deterministic mapping to get

(O, ukr k) = Groiy Ok, Ui ).

m The distributions ¢ are arbitrary and Gj_..r has to be a
diffeomorphism.

m We now have our proposal from ©j to ©,,. With what
probability do we accept it?
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Transdimensional moves

m Mimicking Metropolis-Hastings, given x we propose a point
2’ and accept or not with probability a(x — ).
m We want P to be such that, for all A, B:

/ 2(dz)P(x — da’) = / x(d2')P(2 — dx)
z,x'€AXB z,x'€AXB

or equivalently
/ 7(dz)q(z — dz")a(z — o)
z,x'€AXB

= / 7(da")q(x' — dz)a(x’ — x)
z,x'€AXB
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Transdimensional moves

m Subtle point: m(dx)P(z,dz") does not necessarily admit a
density with respect to a standard measure.

m We cannot write e.g.

7(z)P(z,d2’) = n(x)P(z, 2")dxdx’

m However 7(dx)q(z,dx’) can be assumed to be dominated
and we write

7(z)q(x,dz’) = n(x)q(x, ") dzda’
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Transdimensional moves

First term is:

/ 7(z)q(x — 2)a(x — 2')dxds’
z,2'€AXB

Suppose we propose ' by sampling u ~ ¢ and then taking
(2',u") = G(x,u) deterministically. We write 2/(z,u) and
u'(z,u).

The expression becomes

/ m(z)p(u)a(z — 2/ (z,u))dzdu
z,z’ (z,u)EAXB

What is the reverse transition from z’ to z? Sample
u' ~ ¢ and take (z,u) = G~1(z', ).
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Transdimensional moves

m Second term was:
/ 7(z")q(z’ — 2)a(z’ — x)dzda’
z,x'€AXB
m It becomes, with (z,u) = G~1(2/,/):

/ (2 (u)a(x’ — z(2' u'))d' du’
z(z'u'),2'€AXB

Let us do a change of variable to get an integral with
respect to drdu instead of dx’du':

0G(x,u)

/ (2 (2, 1)) (o (2, 0) ) & (2, w) — )
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Transdimensional moves

m We see that the integrals are equal if

m(z)p(u)a(r — ' (x,u))
0G(x,u)
O(x,u)

)

= (2 (x,u)) ' (W (z,u)) (2 (z,u) — z)

m Thus we can see a valid choice of a(x — 2') in :

0G(x,u)

(')’ (u')
! O(x,u)

a(z — 2') :min( @)
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Transdimensional moves

We can now answer the initial question:

How to move from {k} x O to some other {k'} x ©;7 We
start from some (k, 0).

Sample k' ~ q(k — k'), then sample uy_,p from pp_, .
Compute deterministically (Ox/, ug—x) = Gr_i' (Ok, Uk—si7)-
Compute

(0 ) orr sk (upr ) q(K' — k)
T (0r)pp—k (up—r) q(k — E)

Qs = Mmin (1, Tt (O Uin'))

where

OGOk, Uk— k)
0O, uk—ir)

Tkt (O Uiy ) = ‘
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Reversible Jump algorithm

m Starting with (k(o), 9(0)) iterate for t = 1,2, 3, ...

m With probability 3, set k® = k=1 and do one step of
K leaving (0 | y, M) invariant.

m With probability 1 — 3, propose k' ~ (k" | k¢=1).

m Draw a random variable wy—1)_ 5 ~ @pe—1)_p-

m Apply the deterministic mapping G¢—1)_,;s to get
o', u.

m With “between-models” acceptance probability
a0t - 9'):
accept, i.e. set 00) = ¢/ k() = |/,
otherwise reject, i.e. set 0 = gt O — (=1
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Toy example

m Two models, uniform prior on models p(M;) = p(Ms) = 1.

m In model My, 6 € R and we can evaluate pointwise

posterior; (0) o< p(6 | M1)L(0 | My) = exp (—; (9)2)

m In model My, € R? and we can evaluate pointwise

posteriory(8) o p(6 | Ma)L(0 | Ma) = exp ( (61)? — % (92)2>

1
2
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Toy situation

m In terms of model comparison, we should find

p(Ma |y) _ ply [ M2)p(Ma)
pMily)  ply | Mi)p(Mi)

 Jpep(0| M2)L(O | Ma)do %

 Jrp(0 | MU)LO | M1)do 5
2

T Vo

= V21 = 2.5066

m In terms of parameters, in model My, 6§ ~ N (0,1) and in

model M, 9~N<<8> , (é ?))
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Reversible Jump algorithm

We need to construct various Markov kernels.
m A Markov kernel “within M}” for each model M.

Toy example: introduce a Metropolis Hastings with
random walk proposal, of variance o2 for model M; and ¥
for model M.

m A Markov kernel to move between models, i.e. for each pair
k, proposing k' and proposing to move parameters of M,
to parameters of M.

Toy example: introduce K12 moving a parameter 6 € R
to a parameter (01, 62) € R?, and introduce K; moving a
parameter (61, 0) € R? to a parameter 0 € R.
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Toy example

For K15 do the following.

m Sample u from C(0, 1), a standard Cauchy (dimension
matching).

m Map deterministically (61,602) = G12(0,u) = (6, u), with
Jacobian equal to 1.

m Compute

exp(—0.50% — 0.5u?)
exp(—0.502)C(u;0,1)

]9 = min <1,

Indeed the Jacobian is equal to 1, the priors on M; and
My are identical, and ¢(k' | k) = q(k | k).

m Accept 01,05 or stay at 6.
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Toy example

For K5 do the following.

m Map deterministically (6,u) = Ga—1(61,02) = (61,02), with
Jacobian equal to 1.

m Compute

exp(—0.562)C(62; 0, 1)>

—min |1
@21 mm(  “exp(—0.507 — 0.563)

Indeed the Jacobian is equal to 1, the priors on M and
My are identical, and q(k' | k) = q(k | k).

m Accept 0 or stay at (61, 62).
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Reversible Jump algorithm

m Introduce a probability of performing a “between-model”
move at each step, say f € [0, 1].

m Given the current state of the chain ki, 6; at time t:

- with probability 5, between-model move: draw
(ktt1,0¢41) by drawing k' ~ ¢(k' | k), dimension matching,
deterministic mapping, RJ acceptance ratio. ..

- with probability 1 — 8, within-model move: standard
Metropolis-Hastings in the current model.
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Results

Figure: Parameter (61, 603) in model Ms.
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0 2500 5000 7500 10000
iteration

Figure: Model index k along iterations. Probability of accepting
model jumps: ~ 43.6%. The number of visits in My divided by the
number of visits in M equals ~ 2.39, approximating the Bayes factor
of ~ 2.51.
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If instead of C(0,1) we use N (3,1) for the dimension matching

variable.
2, — S E— — — —
4
1, ANRRE| u Uty L L L [N u u
0 2500 5000 7500 10000
iteration

Figure: Model index k along iterations. Probability of accepting
model jumps: ~ 12.2%. Bayes factor approximated by ~ 2.21.
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If instead of C(0,1) we use N (5,1) for the dimension matching
variable.

0 2500 5000 7500 10000
iteration

Figure: Model index k along iterations. Probability of accepting model
jumps: & 1.43%. Bayes factor approximated by ~ 2.31 (not so bad!).
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Reversible Jump algorithm: conclusion

m Probably the most ambitious MCMC algorithm, aiming at
parameter estimation and model choice in one run.

m In general it’s hard to design auxiliary variables for
dimension matching and deterministic mappings such that
the acceptance rate of between-model moves is decent.

m Transdimensional samplers constitute an on-going research
area, see for instance:
Annealed Importance Sampling Reversible Jump MCMC
Algorithms, by Karagiannis and Andrieu, 2013.
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