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Administrivia

B www.stats.ox.ac.uk/~rebeschi/teaching/1718/AdvSim
m Email: patrick.rebeschini@stats.ox.ac.uk
m Lectures: Mondays 9-10 & Wednesdays 9-10, weeks 1-8.

Class tutors / Teaching Assistant:
m Patrick Rebeschini / Sebastian Schmon
(sebastian.schmon®@magd.ox.ac.uk),
Tuesdays 9:00-10:30, weeks 3, 5, 6, 8, LG.04.
m Sebastian Schmon / Paul Vanetti
(paul.vanetti@spc.ox.ac.uk),
Tuesdays 10:30-12:00, weeks 3, 5, 6, 8, LG.04.
m MSc: Patrick Rebeschini
Tuesdays 11:00-12:00, weeks 3, 5, 6, 8, LG.02.
m Hand in of solutions by Friday 13:00 in the Adv. Simulation tray.
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Objectives of the Course

m Many scientific problems involve intractable integrals.

m Monte Carlo methods are numerical methods to
approximate high-dimensional integrals.

m Based on the simulation of random variables.
m Main application in this course: Bayesian statistics.

m Monte Carlo methods are increasingly used in
econometrics, ecology, environmentrics, epidemiology,
finance, signal processing, weather forecasting. ..

m More than 1,000, 000 results for “Monte Carlo” in Google
Scholar, restricted to articles post 2000.
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Computing Integrals

m For f: X = R, let

I:/Xf(:z:)d:v.

m When X = [0, 1], then we can simply approximate [

through
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m If sup |f' (z)| < M < oo then the approximation error is
€[0,1]

O(n1).
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Riemann Sums
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Figure: Riemann sum approximation (black rectangles) of the integral
of f (red curve).

ck Rebeschini Lecture 1 5/ 19



Computing High-Dimensional Integrals

For X = [0,1] x [0, 1] assuming

”‘Z’”Z (z+1/2’]+1/2)

i=0 j=0 m m

and n = m? then the approximation error is O (nfl/ 2) .

Generally for X = [0, 1]d we have an approximation error in
@ (n_l/ d) .

m So-called “curse of dimensionality”.

m Simpson’s rule also degrades as d increases.
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Computing High-Dimensional Integrals

m For f: X — R, write

I= / f(z)de = / o(z)m(x)dx.
JX X
where 7 is a probability density function on X and

:xe f(x)/m(z).
m Monte Carlo method:

m sample n independent copies Xi,...,X,, of X ~ 1,
m compute

~>

1
= 2
m Then fn — I almost surely and the approximation error is
O (n71/2)

whatever the dimension of the state space X (use CLT).
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Computing High-Dimensional Integrals

m Non-asymptotically, we can prove this result using the

mean-square error. We have:

(I-1,)% =1 —2II, +f2
2]‘ n n

== e+ Z Pt e,
n =1 i=1 i#]

As the samples are i.i.d. and I = E; [p(X)], we have

EL[(1— )2 = 1% — 217 + %Eﬂ[go(Xl)Q] + %n(n e
C Erlp(X1)Y - 17 Vai(e(X1))

n n

and \/E.[(I — I,,)%] = w < ﬁ if |o(x)] <1 V.

m The constant on the r.h.s. of the bound is 1, hence

independent of the dimension of the state space X.
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Computing High-Dimensional Integrals

m In many cases the integrals of interest will directly be
expressed as

I= /ch(x)w(:ﬁ)da: = Ex [p(X)],

for a specific function ¢ and distribution 7.
m The distribution 7 is often called the “target distribution”.
m Monte Carlo approach relies on independent copies of

X ~ .

m Hence the following relationship between integrals and
sampling:

Monte Carlo method to approximate E; [¢(X)]

< simulation method to sample w

m Thus Monte Carlo sometimes refer to simulation methods.
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Ising Model

m Consider a simple 2D-Ising model on a finite lattice
G ={1,2,...m} x {1,2,...,m} where each site o = (3, j)
hosts a particle with a +1 or -1 spin modeled as a r.v. X,.

m The distribution of X = {X,} .5 on {—1, 1}m2 is given by

exp (—BU (z))

T () = 7

where [ > 0 is the inverse temperature and the potential
energy is

U(x)=1J Z o

m Physicists are interested in computing E;, [U (X)] and Z.

m The dimension is m?, where m can easily be 103.
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Ising Model
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Option Pricing

m Let S (¢) denote the price of a stock at time ¢.

m European option: grants the holder the right to buy the
stock at a fixed price K at a fixed time 7" in the future; the
current time being ¢ = 0.

m If at time T the price S (T') exceeds the strike K, the
holder exercises the option for a profit of S (7)) — K. If
S (T') < K, the option expires worthless.

m The payoff to the holder at time T is thus

max (0,S(T) — K).

m To get the expected value at ¢ = 0, we need to multiply it
by a discount factor exp (—r1") where r is a compounded
interest rate:

exp (—rT) E [max (0,5 (T) — K)] .
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Option Pricing

m If we knew explicitly the distribution of S (T") then
E [max (0,5 (T) — K)] is a low-dimensional integral.

m Problem: We only have access to a complex stochastic
model for {S () },cn

Sit+1)=g(S@),W(t+1))
=g(g(S(t-1),W(@),W(t+1))
= g (S(0), W (1),... W (t+1))

where {W (t)},cy is a sequence of random variables and g
is a known function.

Patrick Rebeschini Lecture 1 13/ 19



Option Pricing

m The price of the option involves an integral over the T
latent variables

W,

m Assume these are independent with probability density
function pyy .

m We can write

max(O S( )—K)]
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Bayesian Inference

m Given 0 € O, we assume that Y follows a probability
density function py (y;6).

m Having observed Y = y, we want to perform inference
about 6.

m In the frequentist approach 6 is unknown but fixed;
inference in this context can be performed based on

(0) = logpy (y;9) .

m In the Bayesian approach, the unknown parameter is
regarded as a random variable 9 and assigned a prior py ().
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Frequentist vs Bayesian

m Probabilities refer to limiting relative frequencies. They are
(supposed to be) objective properties of the real world.

m Parameter are fixed unknown constants. Because they are
not random, we cannot make any probability statements
about parameters.

m Statistical procedures should have well-defined long-run
properties. For example, a 95% confidence interval should
include the true value of the parameter with limiting
frequency at least 95%.
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Frequentist vs Bayesian

m Probability describes degrees of subjective belief, not
limiting frequency. Thus we can make probability
statements about things other than data that can recur
from some source; e.g. the probability that there will be an
earthquake in Tokyo on September 27th, 2018.

m We can make probability statements about parameters, e.g.

PO e[-1,1]|Y =y)

m We make inference about a parameter by producing a
probability distribution for it. Point estimates and interval
estimates may then be extracted from this distribution.
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Bayesian Inference

m Bayesian inference relies on the posterior

py (y;0) ps (0)

poy (0y) = -

where

py (y) = /@ py (4:0) py (0) d

is the so-called marginal likelihood or evidence.

m Point estimates such as posterior mean of 1

E (d]y) = /@ Opoyy (0] y) do

can be computed.
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Bayesian Inference

m Credible intervals: any interval C' such that

PWelCly) =1-a.

m Assume the observations are independent given 9 = 6 then
the predictive density of a new observation Yj,.,, having
observed Y =y is

PYewlY (Ynewly) = /epY (Ynew; 0) Py (0]y)do

m In contrast to a simple plug-in rule py (ynew; 5) where 0 is

a point estimate of # (e.g. the MLE), the above predictive
density takes into account the uncertainty about the
parameter 6.
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