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Administrivia

www.stats.ox.ac.uk/∼rebeschi/teaching/1718/AdvSim

Email: patrick.rebeschini@stats.ox.ac.uk

Lectures: Mondays 9-10 & Wednesdays 9-10, weeks 1-8.
Class tutors / Teaching Assistant:

Patrick Rebeschini / Sebastian Schmon
(sebastian.schmon@magd.ox.ac.uk),
Tuesdays 9:00-10:30, weeks 3, 5, 6, 8, LG.04.
Sebastian Schmon / Paul Vanetti
(paul.vanetti@spc.ox.ac.uk),
Tuesdays 10:30-12:00, weeks 3, 5, 6, 8, LG.04.
MSc: Patrick Rebeschini
Tuesdays 11:00-12:00, weeks 3, 5, 6, 8, LG.02.

Hand in of solutions by Friday 13:00 in the Adv. Simulation tray.
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Objectives of the Course

Many scientific problems involve intractable integrals.

Monte Carlo methods are numerical methods to
approximate high-dimensional integrals.

Based on the simulation of random variables.

Main application in this course: Bayesian statistics.

Monte Carlo methods are increasingly used in
econometrics, ecology, environmentrics, epidemiology,
finance, signal processing, weather forecasting. . .

More than 1, 000, 000 results for “Monte Carlo” in Google
Scholar, restricted to articles post 2000.
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Computing Integrals

For f : X→ R, let

I =
∫
X
f (x) dx.

When X = [0, 1], then we can simply approximate I
through

În = 1
n

n−1∑
i=0

f

(
i+ 1/2
n

)
.

If sup
x∈[0,1]

|f ′ (x)| < M <∞ then the approximation error is

O
(
n−1

)
.
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Riemann Sums
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Figure: Riemann sum approximation (black rectangles) of the integral
of f (red curve).
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Computing High-Dimensional Integrals

For X = [0, 1]× [0, 1] assuming

În = 1
m2

m−1∑
i=0

m−1∑
j=0

f

(
i+ 1/2
m

,
j + 1/2
m

)

and n = m2 then the approximation error is O
(
n−1/2

)
.

Generally for X = [0, 1]d we have an approximation error in

O
(
n−1/d

)
.

So-called “curse of dimensionality”.

Simpson’s rule also degrades as d increases.
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Computing High-Dimensional Integrals

For f : X→ R, write

I =
∫
X
f (x) dx =

∫
X
ϕ(x)π(x)dx.

where π is a probability density function on X and

ϕ : x 7→ f(x)/π(x).

Monte Carlo method:
sample n independent copies X1, . . . , Xn of X ∼ π,
compute

În = 1
n

n∑
i=1

ϕ(Xi).

Then În → I almost surely and the approximation error is

O(n−1/2)

whatever the dimension of the state space X (use CLT).
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Computing High-Dimensional Integrals

Non-asymptotically, we can prove this result using the
mean-square error. We have:

(I − În)2 = I2 − 2IÎn + Î2
n

= I2 − 2I
n

n∑
i=1

ϕ(Xi) + 1
n2

n∑
i=1

ϕ(Xi)2 + 1
n2

∑
i 6=j

ϕ(Xi)ϕ(Xj).

As the samples are i.i.d. and I = Eπ [ϕ(X)], we have

Eπ[(I − În)2] = I2 − 2I2 + 1
n
Eπ[ϕ(X1)2] + 1

n2n(n− 1)I2

= Eπ[ϕ(X1)2]− I2

n
= Vπ(ϕ(X1))

n

and
√
Eπ[(I − În)2] =

√
Vπ(ϕ(X1))√

n
≤ 1√

n
if |ϕ(x)| ≤ 1 ∀x.

The constant on the r.h.s. of the bound is 1, hence
independent of the dimension of the state space X.
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Computing High-Dimensional Integrals

In many cases the integrals of interest will directly be
expressed as

I =
∫
X
ϕ(x)π(x)dx = Eπ [ϕ(X)] ,

for a specific function ϕ and distribution π.
The distribution π is often called the “target distribution”.
Monte Carlo approach relies on independent copies of

X ∼ π.

Hence the following relationship between integrals and
sampling:

Monte Carlo method to approximate Eπ [ϕ(X)]
⇔ simulation method to sample π

Thus Monte Carlo sometimes refer to simulation methods.
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Ising Model

Consider a simple 2D-Ising model on a finite lattice
G = {1, 2, ...,m} × {1, 2, ...,m} where each site σ = (i, j)
hosts a particle with a +1 or -1 spin modeled as a r.v. Xσ.

The distribution of X = {Xσ}σ∈G on {−1, 1}m
2

is given by

πβ (x) = exp (−βU (x))
Zβ

where β > 0 is the inverse temperature and the potential
energy is

U (x) = J
∑
σ∼σ′

xσxσ′ .

Physicists are interested in computing Eπβ [U (X)] and Zβ.

The dimension is m2, where m can easily be 103.
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Ising Model

Figure: One draw from the Ising model on a 500× 500 lattice.
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Option Pricing

Let S (t) denote the price of a stock at time t.
European option: grants the holder the right to buy the
stock at a fixed price K at a fixed time T in the future; the
current time being t = 0.
If at time T the price S (T ) exceeds the strike K, the
holder exercises the option for a profit of S (T )−K. If
S (T ) ≤ K, the option expires worthless.
The payoff to the holder at time T is thus

max (0, S (T )−K) .

To get the expected value at t = 0, we need to multiply it
by a discount factor exp (−rT ) where r is a compounded
interest rate:

exp (−rT )E [max (0, S (T )−K)] .
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Option Pricing

If we knew explicitly the distribution of S (T ) then
E [max (0, S (T )−K)] is a low-dimensional integral.

Problem: We only have access to a complex stochastic
model for {S (t)}t∈N

S (t+ 1) = g (S (t) ,W (t+ 1))
= g (g (S (t− 1) ,W (t)) ,W (t+ 1))
=: gt+1 (S (0) ,W (1) , ...,W (t+ 1))

where {W (t)}t∈N is a sequence of random variables and g
is a known function.
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Option Pricing

The price of the option involves an integral over the T
latent variables

{W (t)}Tt=1 .

Assume these are independent with probability density
function pW .

We can write

E [max (0, S (T )−K)]

=
∫

max
[
0, gT (s (0) , w (1) , ..., w (T ))−K

]
×
{

T∏
t=1

pW (w (t))
}
dw (1) · · · dw (T ) .
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Bayesian Inference

Given θ ∈ Θ, we assume that Y follows a probability
density function pY (y; θ).

Having observed Y = y, we want to perform inference
about θ.

In the frequentist approach θ is unknown but fixed;
inference in this context can be performed based on

`(θ) = log pY (y; θ) .

In the Bayesian approach, the unknown parameter is
regarded as a random variable ϑ and assigned a prior pϑ (θ).
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Frequentist vs Bayesian

Probabilities refer to limiting relative frequencies. They are
(supposed to be) objective properties of the real world.

Parameter are fixed unknown constants. Because they are
not random, we cannot make any probability statements
about parameters.

Statistical procedures should have well-defined long-run
properties. For example, a 95% confidence interval should
include the true value of the parameter with limiting
frequency at least 95%.
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Frequentist vs Bayesian

Probability describes degrees of subjective belief, not
limiting frequency. Thus we can make probability
statements about things other than data that can recur
from some source; e.g. the probability that there will be an
earthquake in Tokyo on September 27th, 2018.

We can make probability statements about parameters, e.g.

P (θ ∈ [−1, 1] | Y = y)

We make inference about a parameter by producing a
probability distribution for it. Point estimates and interval
estimates may then be extracted from this distribution.
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Bayesian Inference

Bayesian inference relies on the posterior

pϑ|Y (θ| y) = pY (y; θ) pϑ (θ)
pY (y)

where
pY (y) =

∫
Θ
pY (y; θ) pϑ (θ) dθ

is the so-called marginal likelihood or evidence.

Point estimates such as posterior mean of ϑ

E (ϑ|y) =
∫

Θ
θpϑ|Y (θ| y) dθ

can be computed.
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Bayesian Inference

Credible intervals: any interval C such that

P (ϑ ∈ C| y) = 1− α.

Assume the observations are independent given ϑ = θ then
the predictive density of a new observation Ynew having
observed Y = y is

pYnew|Y (ynew| y) =
∫

Θ
pY (ynew; θ) pϑ|Y (θ| y) dθ

In contrast to a simple plug-in rule pY
(
ynew; θ̂

)
where θ̂ is

a point estimate of θ (e.g. the MLE), the above predictive
density takes into account the uncertainty about the
parameter θ.
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