
Advanced Simulation Methods
Chapter 1 - Introduction to Monte Carlo methods

1 Approximation of integrals
In many scientific problems of interest including finance, operations research, statistical physics and
statistics, it is required to numerically compute integrals, i.e.,

I =

∫
X
f (x) dx

where f : X → R. For simple choices of functions f and spaces X, the integral can be computed exactly,
but in general one has to resort to numerical approximations of I.

When X = [0, 1], then we can simply approximate I through

În =

n−1∑
i=0

1

n
f

(
(i+ 1/2)

n

)
,

which is called the Riemann sum approximation. This corresponds to the approximation of the area
under the curve y = f(x) by the sum of the areas of the rectangles pictured in Figure 1. When f is
differentiable and M = sup

x∈[0,1]

|f ′ (x)| < ∞ then the approximation error is O
(
n−1

)
. Indeed the error of

the k-th rectangle, for k ∈ {0, ..., n− 1} is

εk =

∣∣∣∣∣
∫ (k+1)/n

k/n

f(x)dx− 1

n
f

(
(k + 1/2)

n

)∣∣∣∣∣
=

∣∣∣∣∣
∫ (k+1)/n

k/n

(
f(x)− f

(
(k + 1/2)

n

))
dx

∣∣∣∣∣ .
Now we use the fact that for all x, y ∈ [a, b], there exists c ∈ [a, b] such that

f(x)− f(y) = (x− y)f ′(c).

Using the bound M on f ′, we obtain

εk ≤
∫ (k+1)/n

k/n

∣∣∣∣f(x)− f

(
(k + 1/2)

n

)∣∣∣∣ dx
≤ M

∫ (k+1)/n

k/n

∣∣∣∣x− (k + 1/2)

n

∣∣∣∣ dx
≤ M

1

2n2
.

Summing these errors over the n rectangles yield a total error in O
(
n−1

)
.

However, for X = [0, 1]× [0, 1] assuming

În =
1

n

m−1∑
i=0

m−1∑
j=0

f

(
(i+ 1/2)

m
,
(j + 1/2)

m

)
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Figure 1: Numerical Integration of f : x 7→ 10(cos(x)(1+ x2)− 1), shown in red, by 10 rectangles shown
in grey.

and n = m2 then the approximation error is O
(
n−1/2

)
and generally for X = [0, 1]

d we have an approxi-
mation error in O

(
n−1/d

)
. This suggests that this type of deterministic approximations is inappropriate

to compute high-dimensional integrals. Note that there are more sophisticated deterministic approxima-
tions, such as the trapezoidal rule or Simpson’s rule, but they all suffer from the same degeneracy when
the dimension increases.

The aim of this course is to introduce stochastic simulation methods, which are the most common
tools used to perform numerical integration in high-dimensional scenarios. These methods, also known
as Monte Carlo methods, were introduced in the 1940s and have become extremely popular in statistics
over the past 20 years, as they allow to perform inference for complex statistical models. This course
will be primarily focused on applications of Monte Carlo methods to Bayesian statistics, although the
same methods are extensively used in other applications, as examplified below.

2 Examples of Applications
2.1 Volume of a Convex Body
Let S ⊂ [0, 1]

d be a convex body. In numerous applications, we are interested in computing the volume
of this body which is simply given by

vol (S) =
∫
[0,1]d

IS (x) dx

where IS (x) = 1 if x ∈ S and 0 otherwise.

2.2 Statistical Mechanics
The Ising model is used to model the behavior of a magnet and is the best known/most researched model
in statistical physics. The magnetism of a material is modelled by the collective contribution of dipole
moments of many atomic spins.

Consider a simple 2D-Ising model on a finite lattice G = {1, 2, ...,m} × {1, 2, ...,m} where each site
σ = (i, j) hosts a particle with a +1 or -1 spin modeled as a random variable Xσ. For physical reasons, the
probability distribution of X = {Xσ}σ∈G on X = {−1, 1}m

2

is given by the so-called Gibbs distribution

∀x ∈ X πβ (x) =
exp (−βU (x))

Zβ

where β > 0 is the inverse temperature and the potential energy U is

∀x ∈ X U (x) = J
∑
σ∼σ′

xσxσ′ ,
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Figure 2: Sample from an two-dimensional Ising model.

for some J ∈ R, where σ ∼ σ′ refers to the set of pairs of sites that are “neighbors” in some pre-defined
sense. For instance we can define that two sites σ = (i, j) and σ′ = (i′, j′) are neighbors if and only if
|i− i′| ≤ 1 and |j − j′| ≤ 1. According to this form of potential energy, if xσ = xσ′ and σ ∼ σ′ then
the probability πβ (x) includes a term exp (−J), otherwise it includes a term exp (J). Hence the sign of
J tells us whether there is a preference for equal or opposite spins at sites σ and σ′. The normalizing
constant Zβ ensures that πβ is a probability distribution, that is,

∑
x∈X πβ(x) = 1. Thus it is defined as

Zβ =
∑
x∈X

exp (−βU (x)) .

Physicists are often interested in computing Eπβ
[U (X)] and Zβ . However, analytic results for the Ising

model are very difficult to obtain and physicists often use simulation methods in order to perform these
calculations. Note that the problem of computing sums is equivalent to the problem of computing
integrals and is formally unified by measure theory.

2.3 Financial Mathematics
Let S (t) denote the price of a stock at time t. We consider a call option granting the holder the right
to buy the stock at a fixed price K at a fixed time T in the future; the current time being t = 0. This
is a so-called European option. If at time T the stock price S (T ) exceeds the strike price K, the holder
exercises the option for a profit of S (T )−K. If S (T ) ≤ K, the option expires worthless. The payoff to
the holder at time T is thus

max (0, S (T )−K)

and to get the present value of this payoff we need to multiply it by a discount factor exp (−rT ) where
r is a compounded interest rate. The expected present value is thus

exp (−rT )E [max (0, S (T )−K)]

where the expectation is with respect to the distribution of the random variable S (T ) .
If we knew explicitly the distribution of S (T ), then computing E [max (0, S (T )−K)] would be a

low-dimensional integration problem. However, this distribution is typically not available and we only
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have access to a stochastic model for {S (t)}t∈N of the form

S (t+ 1) = g (S (t) ,W (t+ 1))

= g (g (S (t− 1) ,W (t)) ,W (t+ 1))

= g2 (S (t− 1) ,W (t) ,W (t+ 1))

= gn (S (0) ,W (1) , ...,W (t+ 1))

where {W (t)}t∈N is a sequence of i.i.d. random variables of probability density functions {pW }t∈N and
g is a known nonlinear mapping. We can thus rewrite

E [max (0, S (T )−K)] =

∫
max [0, gn (s (0) , w (1) , ..., w (T ))−K]

{
T∏

t=1

pW (w (t))

}
dw (1) · · · dw (T )

which is a high-dimensional integral whenever T is large.

3 Bayesian Statistics
In this course we will primarily use examples from Bayesian statistics, although numerical integration
problems also arise in classical statistics as well as in other fields of science, as illustrated by the above
examples.

In statistics the data is usually a collection of n values (y1, . . . , yn) ∈ Yn in some space Y, typically
Rdy for some dy. A statistical model consider the data to be realisations of random variables (Y1, . . . , Yn)
defined on the same space. Let us denote Y1, . . . , Yn by Y and y1, . . . , yn by y. The distribution of these
random variables, which is specified by the model, has a density written pY (y; θ) with respect to some
dominating measure, where θ is the parameter of the model living in some space Θ. The density of the
observations, seen as a function of the parameter, is called the likelihood and denoted by Ln:

Ln : θ ∈ Θ 7→ pY (y; θ).

In the frequentist approach, θ is an unknown fixed value and inference is performed based on the likelihood
function. The standard estimator is the maximum likelihood estimator θ̂n, that is the parameter θ
maximizing Ln(θ) for the dataset (y1, . . . , yn). Note that because θ is not random, we write a semi-colon
“;” in pY (y; θ) instead of a vertical bar “|” to emphasize that this is not a conditional distribution. On
the contrary, in the Bayesian approach, the unknown parameter is regarded as a random variable ϑ and
we assign a prior probability distribution to it, of density pϑ (θ) (w.r.t. to a dominating measure denoted
dθ, say Lebesgue if Θ= Rdθ for some dθ). The distribution of Y given ϑ = θ can now be interpreted as
a proper conditional distribution and we thus denote it by pY |ϑ(y | θ). Bayesian inference relies on the
posterior density

pϑ|Y (θ| y) =
pY |ϑ (y | θ) pϑ (θ)

pY (y)
(1)

obtained using Bayes formula, where

pY (y) =

∫
Θ

pY |ϑ (y | θ) pϑ (θ) dθ (2)

is the so-called marginal likelihood or evidence.
Based on this posterior distribution, we can compute various point estimates such as the posterior

mean of ϑ
E (ϑ|y) =

∫
Θ

θ pϑ|Y (θ| y) dθ (3)

or the posterior variance. We can also compute credible intervals, that is a interval C such that

P (ϑ ∈ C| y) = 1− α. (4)
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The posterior distribution can be used prediction of new observations. Assume that we want to predict
the next observation yn+1 given that we already have y = (y1, . . . , yn). Then the predictive density of
Yn+1 having observed Y = y is

pYn+1|Y (yn+1| y) =
∫
Θ

pYn+1|Y,ϑ (yn+1 | y, θ) pϑ|Y (θ| y) dθ. (5)

The above predictive density takes into account the uncertainty about the parameter θ. By contrast,
if we had first estimated the parameter, say by some θ̂, and then plugged the value into a predictive
distribution of Yn+1 using θ̂, then we would not have taken parameter uncertainty into account.

Notation Remark: The above notation is precise but heavy. It is standard in the Bayesian literature
not to use subscripts to index the densities of interest and to use a simpler notation; i.e. (1)-(2)-(3)-(5)
will be written in most of the literature as

p (θ| y) = p (y| θ) p (θ)
p (y)

,

p (y) =

∫
Θ

p (y| θ) p (θ) dθ.

E (ϑ|y) =
∫
Θ

θ p (θ| y) dθ,

p (yn+1| y) =
∫
Θ

p (yn+1| y, θ) p (θ| y) dθ.

This is imprecise as arguments of the densities should only be dummy variables whereas in this notation
they define the densities we consider; i.e. p (θ) means pϑ (θ) and p (y) means pY (y), p (θ| y) means
pϑ|Y (θ| y), etc. However this is standard and will be used here whenever it does not lead to any
confusion. Note that another way to improve this imprecise notation consists in using different letters
for the densities, i.e. µ (θ) = pϑ (θ), g (y| θ) = pY |ϑ (y | θ), p (θ| y) = pϑ|Y (θ| y), etc.

1 (Gaussian data). Let Y = (Y1, ..., Yn) be i.i.d. random variables with Yi ∼ N
(
θ, σ2

)
with σ2 known

and θ unknown. To perform Bayesian inference, we assign a prior on θ by introducing the random variable
ϑ ∼ N

(
µ, κ2

)
, then one can check that

p (θ| y) = N
(
θ; ν, ω2

)
where

ω2 =
κ2σ2

nκ2 + σ2

and

ν =
ω2

κ2
µ+

nω2

σ2
y

=
σ2

nκ2 + σ2
µ+

nκ2

nκ2 + σ2
y

so that directly E (ϑ|y) = ν and V (ϑ|y) = E
(
ϑ2|y

)
− E (ϑ|y)2 = ω2.

If we set C =
(
ν − Φ−1 (1− α/2)ω, ν +Φ−1 (1− α/2)ω

)
, where Φ−1 denotes the inverse of the cu-

mulative distribution function of the Normal distribution, then P (ϑ ∈ C| y) = 1− α.
If we are interested in p (yn+1| y) where Yn+1 ∼ N

(
θ, σ2

)
then

p (yn+1| y) =
∫
Θ

p (yn+1| θ) p (θ| y) dθ

= N
(
yn+1; ν, ω

2 + σ2
)
.

In this simple example, all the calculations can be done analytically. This is because the Normal
prior is “conjugate” with the Normal model with unknown mean and known variance, i.e. the posterior
distribution is in the same family of distributions as the prior distribution (here, the family of Normal
distributions). In general, the calculation of posterior quantities cannot be performed exactly. Indeed,
one might want to use another prior distribution than the conjugate one, or the model might not admit
any conjugate prior distribution.
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2 (Logistic Regression). Let (xi, Yi) ∈ Rd × {0, 1} where xi ∈ Rd is a given covariate and we assume
that the data are independent with

P (Yi = yi| θ) =
exp

(
−yix

T
i θ

)
1 + exp

(
−xT

i θ
) .

To perform Bayesian inference, we assign a prior p (θ) on θ and Bayesian inference relies on

p (θ| y1, ..., yn) =
p (θ)

n∏
i=1

P (Yi = yi| θ)

P (y1, ..., yn)

which is not a standard distribution if p(θ) is chosen to be a Normal distribution. There exists a conjugate
prior distribution for θ but it is not standard itself. The denominator P (y1, ..., yn) cannot be computed
analytically.

In general, statistical models and the associated prior probability distributions should be chosen to
represent a phenomenon and its uncertainties, and thus should not be chosen on the grounds of purely
computational reasons, such as “to make the calculations easier”. Thus in many situations we will
encounter posterior distributions such that we cannot analytically compute the integrals listed above,
e.g. the posterior mean and so on. Going back to the problem of computing integrals, in statistics the
integrals will often be written

I =

∫
Θ

ϕ (θ)π (θ) dθ,

where π is a probability density function, ϕ is a “test” function and Θ a sample space; for instance
with ϕ : θ 7→ θ and π(θ) = p(θ | y), the integral corresponds to the posterior mean. In the context of
approximating I, the distribution π is often called the “target distribution”. The integral can also be
written

I = Eπ [ϕ(ϑ)]

where ϑ follows the distribution π. Monte Carlo methods generally consist in replacing such expectations
by empirical averages.

4 Basic Monte Carlo
The basic Monte Carlo method assumes that it is possible to obtain a collection of n independent draws
from π, and that one can compute ϕ point-wise. We denote the draws from π by θ1, . . . , θn. Then the
Monte Carlo estimator of I is defined as:

În =
1

n

n∑
i=1

ϕ(θi).

The Monte Carlo estimator is unbiased, strongly consistent by the Law of Large Numbers (LLN), and
satisfies the following Central Limit Theorem (CLT):

√
n
(
În − I

)
L−−−−→

n→∞
N (0,Vπ [ϕ(ϑ)])

if Vπ [ϕ(ϑ)], the variance of ϕ(ϑ) when ϑ follows π, is finite. The asymptotic variance Vπ [ϕ(ϑ)] can be
written

Vπ [ϕ(ϑ)] =

∫
(ϕ(θ)− I)

2
π(θ)dθ

and hence it can be itself approximated using the same sample θ1, . . . , θn by

σ̂2
n =

1

n

n∑
i=1

(
ϕ(θi)− În

)2

which converges almost surely to Vπ [ϕ(ϑ)] by the LLN. Sometimes the “unbiased version” is preferred:
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σ̃2
n =

1

n− 1

n∑
i=1

(
ϕ(θi)− În

)2

,

which is unbiased in the sense that E
[
σ̃2
n

]
= Vπ [ϕ(ϑ)].

According to the rate
√
n of the CLT, the variance of the estimator In is of order O(n−1), hence the

standard deviation is of order O(n−1/2). This means that if one wants to divide the standard deviation
by 10 (to obtain “10 times” more precision), one needs to sample 100 times more draws from π, which
typically corresponds to 100 times more computational effort. This rate of convergence can seem to be
very slow. Interestingly, the rate of convergence does not depend on the dimension dθ of the sample
space Θ; it is always

√
n.

Thus Monte Carlo methods converge slower than Riemann sums in one dimension, which error was
shown to decrease in O(n−1); they are of the same accuracy as Riemann sums in two dimensions; and
they are faster than Riemann sums for any dimension dθ ≥ 3. Thus Monte Carlo methods have become
standard tools to approximate integrals of moderate to high dimensions. In other words, Monte Carlo
methods might seem slow, but they are still typically faster than alternative methods. Bakhvalov, Suldin
and other mathematicians have proven results on the minimum error that can be obtained by algorithms
using n pointwise evaluations of f to approximate

∫
X f(x)dx, and the rate n−1/2 is found to be optimal

when the dimension of X is large and/or the “smoothness” of f is low, in some sense. For instance the
smoothness of f can be defined as the maximum integer k such that all k-th order partial derivatives of
f are uniformly bounded on X.

Note that the rate is
√
n uniformly in dθ, but high-dimensional integrals are still harder to approximate

than low-dimensional integrals, as one would expect. Typically, the error associated with Monte Carlo
methods is in f(dθ)/

√
n, where f(dθ) is a polynomial in dθ, or in the worst scenarios, exponential of dθ.

Thus the error might still be very large when dθ is large, as one might not have enough computational
power to scale n with f(dθ).

In order to implement the above-described Monte Carlo method, one needs to obtain i.i.d. samples
from π. The following lecture will describe ways to obtain i.i.d. samples from generic distributions π.
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