
Advanced Simulation

Problem Sheet 4

Exercise 1 (Kalman filter)

Consider a hidden Markov model defined as follows. {Xt}t≥0 is a latent real-valued autoregressive Gaussian

process defined by X0 ∼ N
(
m0, σ

2
0

)
and

Xt = φXt−1 + Vt

where Vt
i.i.d.∼ N

(
0, σ2

V

)
. We observe {Yt}t≥1 given by

Yt = Xt +Wt

where Wt
i.i.d.∼ N

(
0, σ2

W

)
. For any generic sequence {zi}i≥1, we denote (zi, zi+1, ..., zj) by zi:j for i < j.

1. Give the expression of f (xt|xt−1) and g (yt|xt).

2. Show that if p (xt| y1:t) = N
(
xt;m t|t, σ

2
t|t

)
then p (xt+1| y1:t) = N

(
xt+1;m t+1|t, σ

2
t+1|t

)
and give the

expressions of m t+1|t, σ
2
t+1|t as a function of m t|t, σ

2
t|t, φ and σ2

V .

3. Show that if p (xt+1| y1:t) = N
(
xt+1;m t+1|t, σ

2
t+1|t

)
then p (xt+1| y1:t+1) = N

(
xt;m t+1|t+1, σ

2
t+1|t+1

)
and give the expressions of m t+1|t+1, σ

2
t+1|t+1 as a function of m t+1|t, σ

2
t+1|t and σ2

W .

4. Show that if p (xt+1| y1:t) = N
(
xt+1;m t+1|t, σ

2
t+1|t

)
then p (yt+1| y1:t) = N

(
yt+1;µ t+1|t, β

2
t+1|t

)
and

give the expressions of µ t+1|t, β
2
t+1|t as a function of m t+1|t, σ

2
t+1|t and σ2

W .

Exercise 2 (SIS filter)

Consider a Hidden Markov Model (HMM) over 2 time steps,

X0 ∼ µ(·),
Y0| (X0 = x0) ∼ g(·|x0),

X1| (X0 = x0, Y0 = y0) ∼ f(·|x0),

Y1| (X0:1 = x0:1, Y0 = y0) ∼ g(·|x1).

We consider the following sequential importance sampling (SIS) algorithm. Let N > 0 be the number of
particles.

• At time t = 0,

– For i = 1, ..., N , sample X
(i)
0 ∼ µ and set W

(i)
0 = g(y0|X(i)

0 ).

– Normalize
{
W

(i)
0

}n
i=1

so they sum to 1.

– Let ν̂0 =
∑n
i=1W

(i)
0 δ

X
(i)
0

.

• At time t = 1,

– For i = 1, ..., n, sample X
(i)
1 ∼ f(·|X(i)

0 ) and set W
(i)
1 = g(y1|X(i)

1 )W
(i)
0 .
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– Normalize
{
W

(i)
1

}n
i=1

so they sum to 1.

– Let νt =
∑n
i=1W

(i)
1 δ

X
(i)
1

.

1. What distribution does νt approximate? Why is this algorithm called a filter?

2. Express the marginal density pY0
(y0) and the joint density pY0,Y1

(y0, y1) as integrals involving µ, f ,
and g.

3. In terms of the particles generated in the SIS algorithm, suggest unbiased estimates of pY0(y0) and
pY0,Y1

(y0, y1).

Now consider an HMM over t time steps, in the degenerate case where X0, X1, ..., Xt−1 are independent
and all have the same marginal distribution µ, i.e.,

X0 ∼ µ(·), Xk| (X0:k−1 = x0:k−1, Y0:k−1 = y0:k−1) ∼ µ(·), k ≥ 1.

As per a standard HMM, assume that observations are distributed according to

Y0|X0 = x0 ∼ g(·|x0), Yk| (Y0:k−1 = y0:k−1, X0:k = x0:k) ∼ g(·|xk), k ≥ 1.

4. Prove that

V

[∏t
k=0 g (yk|Xk)

pY0:t(y0:t)

]
− V

[∏t−1
k=0 g (yk|Xk)

pY0:t−1 (y0:t−1)

]

=

E
{(∏t−1

k=0 g (yk|Xk)
)2}

p2Y0:t−1
(y0:t−1)

{
E
(
g2 (yt|Xt)

)
p2Yt

(yt)
− 1

}
≥ 0. (1)

5. Assuming that there exists c > 1 such that

inf
k≥0

∫
g(yk|xk)2µ(xk)dxk(∫
g(yk|xk)µ(xk)dxk

)2 ≥ c, (2)

then show that

V

[∏t−1
k=0 g(yk|Xk)

pY0:t−1
(y0:t−1)

]
≥ ct − 1, (3)

where the variance is with respect to the joint distribution of X0, ..., Xt−1.

6. Briefly discuss the practical implications of the bound in part (5) for the efficiency of using Monte
Carlo (for example the estimates you suggested in part (3) to approximate pY0,...,Yt(y0:t) when t is
large.

Simulation question (Reversible jump MCMC)

Consider two models. For model 1 the toy target distribution is given by

π(θ | k = 1) = exp

(
−1

2
θ2
)

whereas for model 2 it is given by

π(θ | k = 2) = exp

(
−1

2
(θ21 + θ22)

)
.

We want to design a trans-dimensional sampler to sample from the distribution of (k, θ).

• Implement standard Metropolis-Hastings kernels K1 for model 1 and K2 for model 2. Check that they
work before going further.
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• Implement trans-dimensional moves to go from model 1 to model 2. That is, for θ ∈ R, propose
an auxiliary variable u ∈ R following the distribution of your choice and a deterministic mapping
G1→2(θ, u) to obtain a point in R2 which you will then accept or reject with the appropriate acceptance
probability.

• Implement trans-dimensional moves to go from model 2 to model 1. That is, for θ ∈ R2, propose a
deterministic mapping G2→1(θ) to obtain a point in R which you will then accept or reject with the
appropriate acceptance probability.

• Put these kernels together to obtain a valid Reversible Jump algorithm. What is the proportion of
visits to each model? What should it be in the limit of the number of iterations?

Simulation question (Parallel tempering)

Consider the following bimodal target distribution:

π(x) ∝ exp
(
−10(x2 − 1)2

)
.

Introduce a sequence 0 < γ1 < . . . < γN = 1 and

∀k ∈ {1, . . . , N} πk(x) = π(x)γk ∝ exp
(
−10γk(x2 − 1)2

)
.

• Run a standard Metropolis-Hastings targeting each πk, using the same proposal distribution for each
k. Does the chain mix equally well for each γk?

• We propose to make the N Metropolis-Hastings interact by adding swap moves. At each iteration,
draw uniformly k, l ∈ {1, . . . , N}. Then propose to exchange Xk for Xl, where X is the current value
of the joint Markov chain targeting

πγ1 ⊗ πγ2 ⊗ . . .⊗ πγN .

Accept this move with probability

min

(
1,
πγk(xl)π

γl(xk)

πγk(xk)πγl(xl)

)
.

The resulting algorithm is called parallel tempering. Show that the swap move leaves the joint target
invariant.

• Run the algorithm and show that it improves the mixing of each chain, especially for high values of γ.

Simulation question (linear Gaussian model – SIS and SIR)

1. Consider a simple linear Gaussian model as described in Chapter 8:

∀t ≥ 1 Xt = φXt−1 + σV Vt,

∀t ≥ 1 Yt = Xt + σWWt,

with X0 ∼ N (0, 1), Vt,Wt
i.i.d.∼ N (0, 1), φ = 0.95, σV = 1, σW = 1. Simulate T = 100 observations

from this model.

2. Using the prior model as a proposal, implement a sequential importance sampling strategy to estimate
E[xt | y1:t] for all t ∈ {1, . . . , T}.

3. By computing the variance of the estimators for a fixed N and all t ∈ {1, . . . , T}, comment on the
empirical performance of SIS as t increases.

4. Conversely, visualize the performance of SIS when t is fixed and N increases.

5. Either implement a Kalman filter or use an existing package, to compare the Monte Carlo estimators
with the exact values of E[xt | y1:t].

6. Add a resampling step to turn SIS into a particle filter (SIR, sequential importance resampling), and
estimate E[xt | y1:t] again.
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