
Advanced Simulation

Problem Sheet 3

Exercise 1 (Gibbs Sampler)

Let πX,Y (x, y) be the density of a distribution of interest. We recall that the systematic scan Gibbs sampler
proceeds as follows to sample from πX,Y .

Systematic Scan Gibbs sampler. Let X(1), Y (1) be the initial state then iterate for t = 2, 3, ...
• Sample Y (t) ∼ πY |X

(
·|X(t−1)) .

• Sample X(t) ∼ πX|Y
(
·|Y (t)

)
.

The random scan Gibbs sampler is an alternative algorithm which proceeds as follows to sample from
πX,Y .

Random Scan Gibbs sampler. Let X(1), Y (1) be the initial state then iterate for t = 2, 3, ...
• Sample J ∈ {1, 2} where P (J = 1) = P (J = 2) = 1/2.
• If J = 1, sample Y (t) ∼ πY |X

(
·|X(t−1)) and set X(t) = X(t−1).

• If J = 2, Sample X(t) ∼ πX|Y
(
·|Y (t−1)) and set Y (t) = Y (t−1).

1. Give the expression of the transition kernel densityKS
X,Y ((x, y) , (x′, y′)) of the Markov chain

(
X(t), Y (t)

)
t≥1

generated by the systematic Gibbs sampler as a function of πX|Y and πY |X . Show that KS
X,Y is not

reversible with respect to πX,Y .

2. Show that the sequence
(
X(t)

)
t≥1 associated to the systematic scan Gibbs sampler is a πX -reversible

Markov chain and give the expression of its associated transition kernel density KS
X (x, x′) as a function

of the two “full” conditional densities πY |X and πY |X .

3. Give the expression of the transition kernel densityKR
X,Y ((x, y) , (x′, y′)) of the Markov chain

(
X(t), Y (t)

)
t≥1

generated by the random scan Gibbs sampler as a function of πX|Y and πY |X . Show that KR
X,Y is

πX,Y−reversible.

Exercise 2 (Metropolis-within-Gibbs)

On a product space X = X1 × X2, consider a target distribution of density π (x1, x2). To sample from π,
the Gibbs sampler iterately samples from πX1|X2

(x1|x2) and πX2|X1
(x2|x1). We consider here a scenario

where it is possible to sample from πX2|X1
(x2|x1) but impossible to sample from πX1|X2

(x1|x2). Then the
following algorithm may be useful. Note that this is nothing but a standard Metropolis–Hastings algorithm
with a cycle of kernels, each updating only one component of the state; but it is commonly referred to as
Metropolis-within-Gibbs (MWG).

We introduce a proposal q (x′1|x1, x2) on X1; i.e. q (x′1|x1, x2) ≥ 0 and
∫
X1
q (x′1|x1, x2) dx′1 = 1 for any

(x1, x2) ∈ X.

Starting with X(1) :=
(
X

(1)
1 , X

(1)
2

)
, iterate for t = 2, 3, ...

• Sample X1 ∼ q
(
·|X(t−1)

1 , X
(t−1)
2

)
.

• Compute α
(
X1|X(t−1)

1 , X
(t−1)
2

)
= min

{
1,

π
(
X1,X

(t−1)
2

)
q
(
X

(t−1)
1

∣∣∣X1,X
(t−1)
2

)
π
(
X

(t−1)
1 ,X

(t−1)
2

)
q
(
X1|X(t−1)

1 ,X
(t−1)
2

)} .
• With probability α

(
X1|X(t−1)

1 , X
(t−1)
2

)
, set X

(t)
1 = X1, otherwise set X

(t)
1 = X

(t−1)
1 .

• Sample X
(t)
2 ∼ πX2|X1

(
·|X(t)

1

)
.
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1. Show that when q (x′1|x1, x2) = πX1|X2
(x′1|x2) then the MWG corresponds to the systematic scan

Gibbs sampler.

2. State the transition kernel corresponding to this algorithm and show that it has invariant distribution
π.

Exercise 3 (Metropolis-Hastings and Gibbs Sampler)

Let X be a finite state-space. We consider the following Markov transition kernel

T (x, y) = α (x, y) q (x, y) +

(
1−

∑
z∈X

α (x, z) q (x, z)

)
δx (y)

where q (x, y) ≥ 0,
∑
y∈X q (x, y) = 1 and 0 ≤ α (x, y) ≤ 1 for any x, y ∈ X. δx (y) is the Kronecker symbol;

i.e. δx (y) = 1 if y = x and zero otherwise.

1. Let π be a probability mass function on X. Show that if

α (x, y) =
γ (x, y)

π (x) q (x, y)

where γ (x, y) = γ (y, x) and γ (x, y) is chosen such that 0 ≤ α (x, y) ≤ 1 for any x, y ∈ X then T is
π−reversible.

2. Verify that the Metropolis-Hastings algorithm corresponds to γ (x, y) = min {π (x) q (x, y) , π (y) q (y, x)}.
The Baker algorithm is an alternative corresponding to

γ (x, y) =
π (x) q (x, y)π (y) q (y, x)

π (x) q (x, y) + π (y) q (y, x)
.

Give the associated acceptance probability α (x, y) for the Baker algorithm.

3. Peskun’s theorem (1973) is a very important result in the MCMC literature which states the following.

Theorem: Let T1 and T2 be two reversible, aperiodic and irreducible Markov transition kernels w.r.t
π. If

T1 (x, y) ≥ T2 (x, y) , for all x 6= y ∈ X

then, for all functions φ : X→ R, the asymptotic variance of MCMC estimators În (φ) = 1
n

∑n−1
t=0 φ

(
X(t)

)
of I (φ) = Eπ [φ (X)] is smaller for T1 than T2.

Assume that you are in a scenario where both Metropolis-Hastings and Baker algorithms yield aperiodic
and irreducible Markov chains. Which algorithm provides estimators of I (φ) with the lowest asymptotic
variance?

4. Suppose that X = (X1, ..., Xd) where Xi takes m ≥ 2 possible values and π (x) = π (x1, ..., xd) is the
distribution of interest. The random scan Gibbs sampler proceeds as follows.

Random scan Gibbs sampler. Let
(
X

(1)
1 , ..., X

(1)
d

)
be the initial state then iterate for t = 2, 3, ...

• Sample an index K uniformly on {1, ..., d} .

• Set X
(t)
i := X

(t−1)
i for i 6= K and sample X

(t)
K ∼ πXK |X−K

(
·|X(t)

1 , ..., X
(t)
K−1, X

(t)
K+1, ..., X

(t)
d

)
.

Consider now a modified random scan Gibbs sampler where instead of sampling X
(t)
K from its condi-

tional distribution, we use the following proposal

q (XK = x∗K |x−K , xK) =


πXK |X−K

(x∗K |x−K)

1−πXK |X−K
(xK |x−K) for x∗K 6= xK

0 otherwise

where x−K := (x1, ..., xK−1, xK+1, ..., xd) which is accepted with probability

α (x−K , xK , x
∗
K) = min

{
1,

1− πXK |X−K
(xK |x−K)

1− πXK |X−K
(x∗K |x−K)

}
.
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Modified random scan Gibbs sampler. Let
(
X

(1)
1 , ..., X

(1)
d

)
be the initial state then iterate for

t = 2, 3, ...

• Sample an index K uniformly on {1, ..., d} .

• Set X
(t)
i := X

(t−1)
i for i 6= K.

• Sample XK such that P (XK = x∗K) = q
(
X∗K = x∗K |X

(t)
−K , X

(t−1)
K

)
.

• With probability α
(
X

(t)
−K , X

(t−1)
K , XK

)
, set X

(t)
K = X∗K and X

(t)
K = X

(t−1)
K otherwise.

Assume that both algorithms provide an irreducible and aperiodic Markov chain. Check that both
transition kernels are π-reversible and use Peskun’s theorem to show that the modified random scan
Gibbs sampler provides estimators of I (φ) with a lower asymptotic variance than the standard random
scan Gibbs sampler.

Exercise 4 (Metropolis-Hastings)

Consider a target distribution on X = Rd of density π (x). We propose to sample from it using a Metropolis-
Hastings algorithm based on a random proposal. Given X(t−1), the proposal X is sampled as follows: X(t−1)

is the input to a stochastic optimization procedure that returns an estimate ϑ ∈ X of the local maximiser
of π (x) in the vicinity of X(t−1). The random variable ϑ follows an unknown probability density function
f
(
θ|X(t−1)) . We then sample X ∼ g ( ·|ϑ) where g ( ·|ϑ) is a multivariate normal of mean ϑ and fixed

covariance Σ.

1. Express the proposal q (x′|x) as a function of f and g. Is it possible to evaluate the acceptance

probability αMH (x′|x) = min

{
1,

π(x′)q(x|x′)
π(x)q(x′|x)

}
associated to this proposal?

2. Consider now the following randomized Metropolis-Hastings algorithm.

Set X(1) = x, ϑ(1) = θ then iterate for t = 2, 3, ...

(a) Sample X ∼ g
(
·|ϑ(t−1)

)
and ϑ ∼ f ( ·|X).

(b) Compute

αRMH

{
(X,ϑ)|

(
X(t−1), ϑ(t−1)

)}
= min

{
1,

π (X) g
(
X(t−1)

∣∣ϑ)
π
(
X(t−1)

)
g
(
X|ϑ(t−1)

)} .
(c) With probability αRMH

{
(X,ϑ)|

(
X(t−1), ϑ(t−1)

)}
, set

(
X(t), ϑ(t)

)
= (X,ϑ) and otherwise set(

X(t), ϑ(t)
)

=
(
X(t−1), ϑ(t−1)

)
.

Show that the transition kernel associated to the above algorithm admits an invariant distribution of
density π (x, θ) such that π (x) = π (x) .

3. Prove that for any real-valued random variables U, V , we have

E (min {U, V }) ≤ min (E {U} ,E {V }) .

4. Using the result of (3), prove that the expected acceptance probability αRMH

{
(X,ϑ)|

(
X(t−1), ϑ(t−1)

)}
of the randomized Metropolis-Hastings at stationarity is smaller than the expected acceptance proba-
bility αMH

{
X|X(t−1)} of the “ideal” Metropolis-Hastings at stationarity.

Exercise 5 (Thinning of a Markov chain)

1. Prove the Cauchy-Schwarz inequality which states that for any two real-valued random variables Y
and Z,

|E [Y Z]|2 ≤ E
[
Y 2
]
E
[
Z2
]
.

(Hint: (Y − αZ)
2 ≥ 0 for any α ∈ R).
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2. Using Cauchy-Schwarz inequality, show that when the marginal distributions of Y and Z are identical
then

Cov (Y, Z) ≤ Var (Y ) .

3. Thinning of a Markov chain
{
X(t)

}
t≥0 is the technique of retaining a subsequence of the sampled

process for purposes of computing ergodic averages. For some m ∈ N we retain the “subsampled”
chain

{
Y (t)

}
t≥0 defined by

Y (t) := X(m.t).

We might hope that
{
Y (t)

}
t≥0 will exhibit lower autocorrelation than the original chain

{
X(t)

}
t≥0

and thus will yield ergodic averages of lower variance.

Consider a stationary Markov chain
{
X(t)

}
t≥0. Let T and m be any two integers such that T ≥ m > 1

and T/m ∈ N. Show that

Var

[
1

T

T−1∑
t=0

X(t)

]
≤ Var

 1

T/m

T/m−1∑
t=0

Y (t)


and briefly explain what this result tells us about the use of thinning.

(Hint: start by writing
∑T−1
t=0 X(t) =

∑m−1
t=0

∑T/m−1
s=0 X(s.m+t))

Simulation question (Probit model — Gibbs and M-H)

Suppose our dataset is made of binary observations Y1, . . . , Yn. For instance Yi is 1 if student “i” has passed
the exam and 0 otherwise. Assume we know p covariates about the students, such as the time spent studying,
the number of classes he attended, the ability to cheat without getting caught, etc. We call the covariates
“explanatory variables” and store them in a matrix X of size n × p. The probit model states that for each
i = 1, . . . , n,

Yi =

{
1 with probability Φ(XT

i β)

0 with probability 1− Φ(XT
i β)

where Xi is the i-th row of X, Φ is the distribution function of a standard Normal distribution, and β ∈ Rp is
the parameter to infer. Inferring β allows to learn and quantify the effect of each covariate on the observation.

1. Generate a synthetic dataset Y from the probit model for an arbitrary value of β and an matrix X.

(Hint: choose p = 2 and n small, say 50, to make things easier.)

2. Introduce the prior distribution on β:
π(β) = N (0, B)

for a p× p covariance matrix B. Write a function taking a vector β as argument and returning the log
posterior density function evaluated at β.

3. Use it to run a Metropolis-Hastings algorithm and plot the output.

4. For all i = 1, . . . , n, introduce the random variable Zi distributed as N (XT
i β, 1). Compare the law of

1Zi≥0 with the law of Yi.

5. Use Z to design a Gibbs sampler, alternatively sampling from β given Z, Y and from Z given β, Y .

6. Compare the performance of your Gibbs and Metropolis-Hastings samplers.
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