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Discriminant analysis

Plug-in Classification

Consider the 0-1 loss and the risk:

E
Ë
L(Y, f(X))

--X = x

È
=

Kÿ

k=1
L(k, f(x))P(Y = k|X = x)

The Bayes classifier provides a solution that minimizes the risk:

fBayes(x) = arg max
k=1,...,K

fikgk(x).

We know neither the conditional density gk nor the class probability fik!
The plug-in classifier chooses the class

f(x) = arg max
k=1,...,K

‚fik‚gk(x),

where we plugged in
estimates ‚fik of fik and k = 1, . . . , K and
estimates ‚gk(x) of conditional densities,

Linear Discriminant Analysis is an example of plug-in classification.



Discriminant analysis

Summary: Linear Discriminant Analysis

LDA: a plug-in classifier assuming multivariate normal conditional density
gk(x) = gk(x|µk, �) for each class k sharing the same covariance �:

X|Y = k ≥N (µk, �),

gk(x|µk, �) =(2fi)≠p/2|�|≠1/2 exp
3

≠1
2(x ≠ µk)€�≠1(x ≠ µk)

4
.

LDA minimizes the squared Mahalanobis distance between x and ‚µk,
offset by a term depending on the estimated class proportion ‚fik:

fLDA(x) = argmax
kœ{1,...,K}

log ‚fikgk(x|‚µk, ‚�)

= argmax
kœ{1,...,K}

3
log ‚fik ≠ 1

2 ‚µ€
k

‚�≠1‚µk

4
+

1
‚�≠1‚µk

2€
x

¸ ˚˙ ˝
terms depending on k linear in x

= argmin
kœ{1,...,K}

1
2(x ≠ ‚µk)€ ‚�≠1(x ≠ ‚µk)¸ ˚˙ ˝

squared Mahalanobis distance

≠ log ‚fik.



Discriminant analysis

LDA projections

Figure by R. Gutierrez-Osuna



Discriminant analysis

LDA vs PCA projections
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LDA separates the groups better.



Discriminant analysis

Fisherfaces

Eigenfaces vs. Fisherfaces, Belhumeur et al. 1997

http://ieeexplore.ieee.org/document/598228/

http://ieeexplore.ieee.org/document/598228/


Discriminant analysis Quadratic Discriminant Analysis

Conditional densities with different covariances

Given training data with K classes, assume a parametric form for conditional
density gk(x), where for each class

X|Y = k ≥ N (µk, �k),

i.e., instead of assuming that every class has a different mean µk with the
same covariance matrix � (LDA), we now allow each class to have its own
covariance matrix.
Considering log fikgk(x) as before,

log fikgk(x) = const + log(fik) ≠ 1
2

!
log |�k| + (x ≠ µk)T �≠1

k (x ≠ µk)
"

= const + log(fik) ≠ 1
2

!
log |�k| + µ

T
k �≠1

k µk

"

+µ
T
k �≠1

k x ≠ 1
2x

T �≠1
k x

= ak + b
T
k x + x

T
ckx.

A quadratic discriminant function instead of linear.



Discriminant analysis Quadratic Discriminant Analysis

Quadratic decision boundaries

Again, by considering that we choose class k over k
Õ,

ak + b
T
k x + x

T
ckx ≠ (akÕ + b

T
kÕx + x

T
ckÕx)

= aı + b
T
ı x + x

T
cıx > 0

we see that the decision boundaries of the Bayes Classifier are quadratic
surfaces.

The plug-in Bayes Classifer under these assumptions is known as the
Quadratic Discriminant Analysis (QDA) Classifier.
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QDA

LDA classifier:

fLDA(x) = arg min
kœ{1,...,K}

Ó
(x ≠ ‚µk)T ‚�≠1(x ≠ ‚µk) ≠ 2 log(‚fik)

Ô

QDA classifier:

fQDA(x) = arg min
kœ{1,...,K}

Ó
(x ≠ ‚µk)T ‚�k

≠1(x ≠ ‚µk) ≠ 2 log(‚fik) + log(|‚�k|)
Ô

for each point x œ X where the plug-in estimate ‚µk is as before and ‚�k is (in
contrast to LDA) estimated for each class k = 1, . . . , K separately:

‚�k = 1
nk

ÿ

j:yj=k

(xj ≠ ‚µk)(xj ≠ ‚µk)T
.



Discriminant analysis Quadratic Discriminant Analysis

Computing and plotting the QDA boundaries.

##fit QDA
iris.qda <- qda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

iris.qdp <- predict(iris.qda,z)$class
contour(x,y,matrix(iris.qdp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



Discriminant analysis Quadratic Discriminant Analysis

Iris example: QDA boundaries

●●● ●●

●

●

●●

●

●●

●●

●

●●

● ●●

●

●

●

●

●●

●

●● ●●

●

●

●●●●

●

● ●

●●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Petal.Length

Pe
ta
l.W

id
th



Discriminant analysis Quadratic Discriminant Analysis

Iris example: QDA boundaries
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Discriminant analysis Quadratic Discriminant Analysis

LDA or QDA?

Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.
If the covariances of different classes are very distinct, QDA will probably
have an advantage over LDA.
Parametric models are only ever approximations to the real world,
allowing more flexible decision boundaries (QDA) may seem like a
good idea. However, there is a price to pay in terms of increased
variance and potential overfitting.



Discriminant analysis Quadratic Discriminant Analysis

Regularized Discriminant Analysis

In the case where data is scarce, to fit
LDA, need to estimate K ◊ p + p ◊ p parameters
QDA, need to estimate K ◊ p + K ◊ p ◊ p parameters.

Using LDA allows us to better estimate the covariance matrix �. Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices �k are more variable.
RDA combines the strengths of both classifiers by regularizing each
covariance matrix �k in QDA to the single one � in LDA

�k(–) = –�k + (1 ≠ –)� for some – œ [0, 1].

This introduces a new parameter – and allows for a continuum of models
between LDA and QDA to be used. Can be selected by Cross-Validation for
example.



Logistic regression

Logistic regression



Logistic regression

Review

In LDA and QDA, we estimate p(x|y), but for classification we are mainly
interested in p(y|x)
Why not estimate that directly? Logistic regression1 is a popular way of
doing this.

1Despite the name “regression”, we are using it for classification!



Logistic regression

Logistic regression

One of the most popular methods for classification
Linear model on the probabilities
Dates back to work on population growth curves by Verhulst [1838, 1845,
1847]
Statistical use for classification dates to Cox [1960s]
Independently discovered as the perceptron in machine learning
[Rosenblatt 1957]
Main example of “discriminative” as opposed to “generative” learning
Naïve approach to classification: we could do linear regression assigning
specific values to each class. Logistic regression refines this idea and
provides a more suitable model.



Logistic regression

Logistic regression
Statistical perspective: consider Y = {0, 1}. Generalised linear model
with Bernoulli likelihood and logit link:

Y |X = x, a, b ≥ Bernoulli
!
s(a + b

€
x)

"

s(a + b
€

x) = 1
1+exp(≠(a+b€x)) .

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

ML perspective: a discriminative classifier. Consider binary
classification with Y = {+1, ≠1}. Logistic regression uses a parametric
model on the conditional Y |X, not the joint distribution of (X, Y ):

p(Y = y|X = x; a, b) = 1
1 + exp(≠y(a + b€x)) .



Logistic regression

Prediction Using Logistic Regression



Logistic regression

Hard vs Soft classification rules

Consider using LDA for binary classification with Y = {+1, ≠1}.
Predictions are based on linear decision boundary:

‚yLDA(x) = sign
Ó

log ‚fi+1g+1(x|‚µ+1, ‚�) ≠ log ‚fi≠1g≠1(x|‚µ≠1, ‚�)
Ô

= sign
)

a + b
€

x
*

for a and b depending on fitted parameters ‚◊ = (‚fi+1, ‚fi≠1, ‚µ+1, ‚µ≠1, �).
Quantity a + b

€
x can be viewed as a soft classification rule. Indeed, it is

modelling the difference between the log-discriminant functions, or
equivalently, the log-odds ratio:

a + b
€

x = log p(Y = +1|X = x; ‚◊)
p(Y = ≠1|X = x; ‚◊)

.

f(x) = a + b
€

x corresponds to the “confidence of predictions” and loss
can be measured as a function of this confidence:

exponential loss: L(y, f(x)) = e≠yf(x),
log-loss: L(y, f(x)) = log(1 + e≠yf(x)),
hinge loss: L(y, f(x)) = max{1 ≠ yf(x), 0}.



Logistic regression

Linearity of log-odds and logistic function
a + b

€
x models the log-odds ratio:

log p(Y = +1|X = x; a, b)
p(Y = ≠1|X = x; a, b) = a + b

€
x.

Solve explicitly for conditional class probabilities (using
p(Y = +1|X = x; a, b) + p(Y = ≠1|X = x; a, b) = 1):

p(Y = +1|X = x; a, b) = 1
1 + exp(≠(a + b€x)) =: s(a + b

€
x)

p(Y = ≠1|X = x; a, b) = 1
1 + exp(+(a + b€x)) = s(≠a ≠ b

€
x)

where s(z) = 1/(1 + exp(≠z)) is the logistic function.

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1



Logistic regression

Fitting the parameters of the hyperplane

How to learn a and b given a training data set (xi, yi)n
i=1?

Consider maximizing the conditional log likelihood for Y = {+1, ≠1}:

p(Y = yi|X = xi; a, b) = p(yi|xi) =
;

s(a + b
€

xi) if Y = +1
1 ≠ s(a + b

€
xi) if Y = ≠1

Noting that 1 ≠ s(z) = s(≠z), we can write the log-likelihood using the
compact expression:

log p(yi|xi) = log s(yi(a + b
€

xi)).

And the log-likelihood over the whole i.i.d. data set is:

¸(a, b) =
nÿ

i=1
log p(yi|xi) =

nÿ

i=1
log s(yi(a + b

€
xi)).



Logistic regression

Fitting the parameters of the hyperplane
How to learn a and b given a training data set (xi, yi)n

i=1?
Consider maximizing the conditional log likelihood:

¸(a, b) =
nÿ

i=1
log p(yi|xi) =

nÿ

i=1
log s(yi(a + b

€
xi)).

Equivalent to minimizing the empirical risk associated with the log loss:

‚Rlog(fa,b) = 1
n

nÿ

i=1
≠ log s(yi(a+b

€
xi)) = 1

n

nÿ

i=1
log(1+exp(≠yi(a+b

€
xi)))



Logistic regression

Could we use the 0-1 loss?

With the 0-1 loss, the risk becomes:

‚R(fa,b) = 1
n

nÿ

i=1
step(≠yi(a + b

€
xi))

But what is the gradient? ...
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