# Statistical Machine Learning Hilary Term 2019

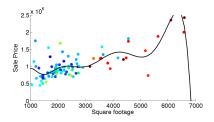
Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/SML19.html

February 6, 2019

# Last time: Overfitting, model selection

#### Fitting the housing price data with high order polynomials

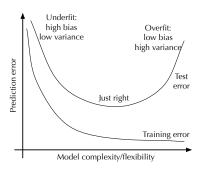


Note that the price would go to zero (or negative) if you buy bigger ones! **This** is called poor generalization/overfitting.

$$R(f) = R_N^{\mathsf{emp}}(f) + \mathsf{overfit}$$
 penalty.

- ullet Cross-validation can be used to estimate R(f) and select the adequate model complexity.
- Another possible strategy is to try to estimate the overfit penalty (e.g. via regularization).

# Building models to trade bias with variance



- Building a machine learning model involves trading between its bias and variance. We will see many examples in the next lectures:
  - Bias reduction at the expense of a variance increase: building more complex models, e.g. adding nonlinear features and additional parameters, increasing the number of hidden units in neural nets, using decision trees with larger depth, decreasing the regularization parameter.
  - Variance reduction at the expense of a bias increase: early stopping, using k-nearest neighbours with larger k, increasing the regularization parameter.

# Regularization

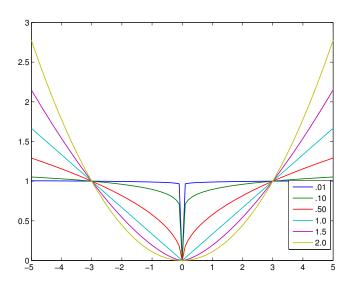
- Flexible models for high-dimensional problems require many parameters.
- With many parameters, learners can easily overfit.
- Regularization: Limit flexibility of model to prevent overfitting.
- Add term penalizing large values of parameters θ.

$$\min_{\theta} R_N(f_{\theta}) + \lambda \|\theta\|_{\rho}^{\rho} = \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\theta}(x_i)) + \lambda \|\theta\|_{\rho}^{\rho}$$

where  $\rho \geq 1$ , and  $\|\theta\|_{\rho} = (\sum_{j=1}^{p} |\theta_{j}|^{\rho})^{1/\rho}$  is the  $L_{\rho}$  norm of  $\theta$  (also of interest when  $\rho \in [0,1)$ , but is no longer a norm).

- Also known as shrinkage methods—parameters are shrunk towards 0.
- λ is a tuning parameter (or hyperparameter) and controls the amount of regularization, and resulting complexity of the model.

# Regularization

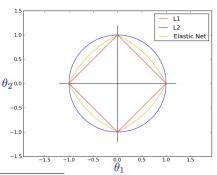


 $L_{\rho}$  regularization profile for different values of  $\rho$ .

# Types of Regularization

- Ridge regression / Tikhonov regularization:  $\rho = 2$  (Euclidean norm)
- LASSO:  $\rho = 1$  (Manhattan norm)
- Sparsity-inducing regularization:  $\rho \le 1$  (nonconvex for  $\rho < 1$ )
- Elastic net<sup>1</sup> regularization: mixed L<sub>1</sub>/L<sub>2</sub> penalty:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\theta}(x_i)) + \lambda \left[ (1 - \alpha) \|\theta\|_2^2 + \alpha \|\theta\|_1 \right]$$



<sup>&</sup>lt;sup>1</sup> Figure source: http://scikit-learn.sourceforge.net

# Regularized linear regression

A new loss or error function to minimize

$$R_N(\boldsymbol{\theta}, \theta_0) = \sum_n (y_n - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_n - \theta_0)^2 + \lambda \|\boldsymbol{\theta}\|_2^2$$

where  $\lambda > 0$  controls the model complexity, "shrinking" weights towards 0.

• If  $\lambda \to +\infty$ , then

$$\widehat{m{ heta}} 
ightarrow {m{0}}$$

• If  $\lambda \to 0$ , back to normal OLS (Ordinary Least Squares).

**For regularized linear regression**: the solution changes very little (in form) from the OLS solution

$$\operatorname{argmin} \sum_{n} (y_n - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_n - \theta_0)^2 + \lambda \|\boldsymbol{\theta}\|_2^2 \Rightarrow \widehat{\boldsymbol{\theta}} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

and reduces to the OLS solution when  $\lambda = 0$ , as expected.

As long as  $\lambda \geq 0$ , the optimization problem remains convex.

# Example: overfitting with polynomials

#### Our regression model

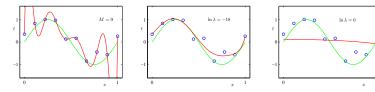
$$y = \sum_{m=1}^{M} \theta_m x^m$$

Regularization would discourage large parameter values as we saw with the OLS solution, thus potentially preventing overfitting.

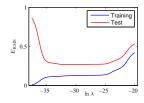
|                       | M=0  | M = 1 | M = 3  | M = 9       |
|-----------------------|------|-------|--------|-------------|
| $\overline{\theta_0}$ | 0.19 | 0.82  | 0.31   | 0.35        |
| $	heta_1$             |      | -1.27 | 7.99   | 232.37      |
| $	heta_2$             |      |       | -25.43 | -5321.83    |
| $	heta_3$             |      |       | 17.37  | 48568.31    |
| $	heta_4$             |      |       |        | -231639.30  |
| $	heta_5$             |      |       |        | 640042.26   |
| $	heta_6$             |      |       |        | -1061800.52 |
| $	heta_7$             |      |       |        | 1042400.18  |
| $	heta_8$             |      |       |        | -557682.99  |
| $	heta_9$             |      |       |        | 125201.43   |

# Overfitting in terms of $\lambda$

Overfitting is reduced from complex model to simpler one with the help of increasing regularizers



 $\lambda$  vs. residual error shows the difference of the model performance on training and testing dataset



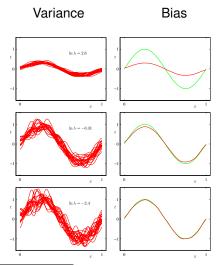
## The effect of $\lambda$

#### Large $\lambda$ attenuates parameters towards 0

|            | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|------------|-------------------------|---------------------|-------------------|
| $\theta_0$ | 0.35                    | 0.35                | 0.13              |
| $	heta_1$  | 232.37                  | 4.74                | -0.05             |
| $	heta_2$  | -5321.83                | -0.77               | -0.06             |
| $	heta_3$  | 48568.31                | -31.97              | -0.06             |
| $	heta_4$  | -231639.30              | -3.89               | -0.03             |
| $	heta_5$  | 640042.26               | 55.28               | -0.02             |
| $	heta_6$  | -1061800.52             | 41.32               | -0.01             |
| $	heta_7$  | 1042400.18              | -45.95              | -0.00             |
| $	heta_8$  | -557682.99              | -91.53              | 0.00              |
| $	heta_9$  | 125201.43               | 72.68               | 0.01              |

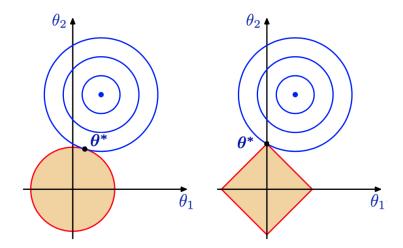
## The effect of $\lambda$

Increasing  $\lambda$  reduces variance (left) and increases bias (right)<sup>2</sup>.



<sup>&</sup>lt;sup>2</sup>Bishop PRML Figure 3.5

# $L_1$ promotes sparsity



 $L_1$  regularization often leads to optimal solutions with many zeros, i.e., the regression function depends only on the (small) number of features with non-zero parameters.

# Regularization in R demo

```
http://www.stats.ox.ac.uk/~palamara/teaching/SML19/
regularization.html
```

## What if $X^TX$ is not invertible?

#### Can you think of any reasons why that could happen?

**Answer 1:** N < D. Intuitively, not enough data to estimate all the parameters.

**Answer 2:** X columns are not linearly independent. Intuitively, there are two features that are perfectly correlated. In this case, solution is not unique.

# Ridge regression

**Intuition:** what does a non-invertible  $X^TX$  mean? Consider the SVD of this matrix:

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \boldsymbol{V} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & \ddots & 0 \\ 0 & \cdots & \cdots & \lambda_r & 0 \\ 0 & \cdots & \cdots & 0 & 0 \end{bmatrix} \boldsymbol{V}^{\top}$$

where  $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r > 0$  and r < D.

**Regularization can fix this problem** by ensuring all singular values are non-zero

$$oldsymbol{X}^{\mathrm{T}}oldsymbol{X} + \lambda oldsymbol{I} = oldsymbol{V}\mathsf{diag}(\lambda_1 + \lambda, \lambda_2 + \lambda, \cdots, \lambda)oldsymbol{V}^{\mathsf{T}}$$

where  $\lambda > 0$  and  $\boldsymbol{I}$  is the identity matrix

# Computational complexity

**Bottleneck of computing the solution?** The OLS problem has a simple, closed-form solution. But computing it involves a number of matrix operations:

$$oldsymbol{ heta} = \left( oldsymbol{X}^{\mathrm{T}} oldsymbol{X} 
ight)^{-1} oldsymbol{X}^{\mathrm{T}} oldsymbol{y}$$

Matrix multiply of  $X^TX \in \mathbb{R}^{(D+1)\times (D+1)}$ Inverting the matrix  $X^TX$ 

#### How many operations do we need?

- $O(ND^2)$  for matrix multiplication
- O(D<sup>3</sup>) (e.g., using Gauss-Jordan elimination) or O(D<sup>2.373</sup>) (recent theoretical advances) for matrix inversion
- Impractical for very large D or N
- As an alternative, we could use numerical methods. This type of approach is widely used in several other machine learning algorithms.
   These methods are often the only available option, since sometimes we don't have a closed form solution available.

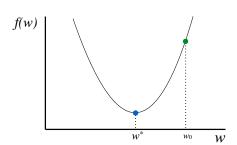
# Alternative method: an example of using numerical optimization

#### (Batch) Gradient descent

- Initialize  $\theta$  to  $\theta^{(0)}$  (e.g., randomly); set t=0; choose  $\eta>0$
- Loop until convergence
  - Ompute the gradient  $\nabla R_N(\boldsymbol{\theta}) = \boldsymbol{X}^{\mathrm{T}} \left( \boldsymbol{X} \boldsymbol{\theta}^{(t)} \boldsymbol{y} \right)$
  - Update the parameters  $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} \eta \nabla R_N(\boldsymbol{\theta})$
  - $0 t \leftarrow t+1$

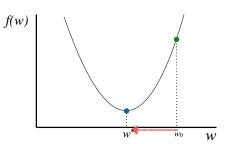
What is the complexity of each iteration?

Start at a random point



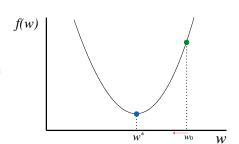
Start at a random point

Determine a descent direction



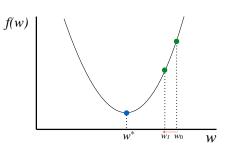
Start at a random point

Determine a descent direction Choose a step size



Start at a random point

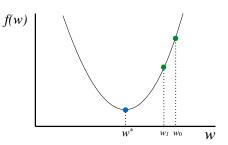
Determine a descent direction Choose a step size Update



Start at a random point

#### Repeat

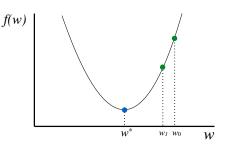
Determine a descent direction Choose a step size Update



Start at a random point

#### Repeat

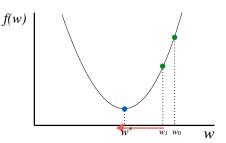
Determine a descent direction Choose a step size Update



Start at a random point

#### Repeat

Determine a descent direction Choose a step size Update

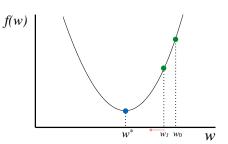


Start at a random point

#### Repeat

Determine a descent direction

Choose a step size
Update

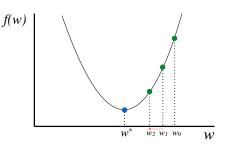


Start at a random point

#### Repeat

Determine a descent direction Choose a step size

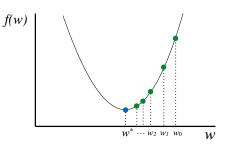
Update



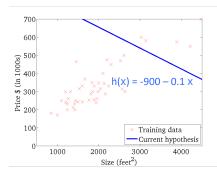
Start at a random point

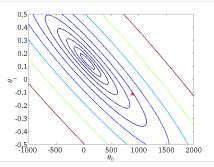
#### Repeat

Determine a descent direction Choose a step size Update

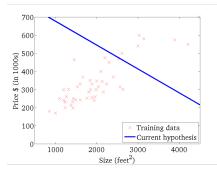


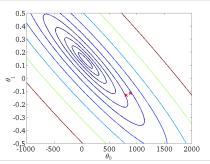




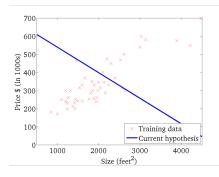


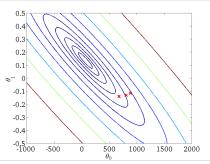




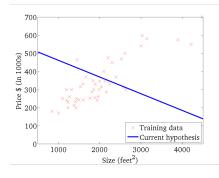


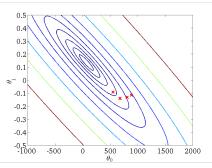




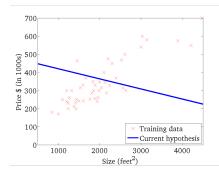


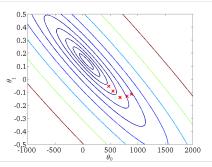




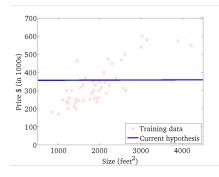


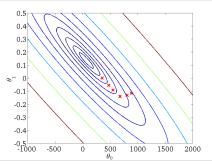




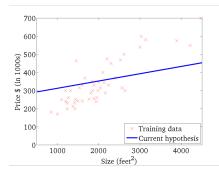


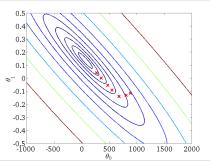




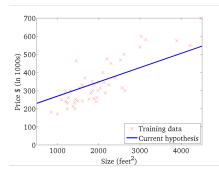


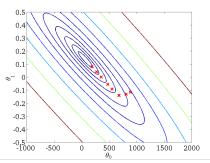




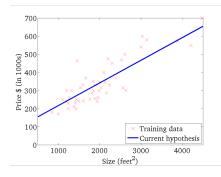


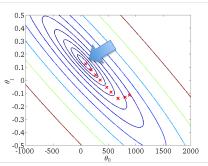






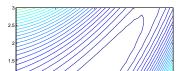






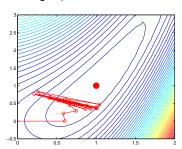
# Seeing in action

#### Choosing the right $\eta$ is important



small  $\eta$  is too slow?

large  $\eta$  is too unstable?



To see if gradient descent is working, print out function value at each iteration.

- The value should decrease at each iteration.
- Otherwise, adjust  $\eta$ .

# Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

- Initialize  $\theta$  to  $\theta^{(0)}$  (anything reasonable is fine); set t=0; choose  $\eta>0$
- Loop until convergence
  - lacktriangledown randomly choose training sample  $oldsymbol{x}_t$
  - Compute its contribution to the gradient

$$\boldsymbol{g}_t = (\boldsymbol{x}_t^{\mathrm{T}} \boldsymbol{\theta}^{(t)} - y_t) \boldsymbol{x}_t$$

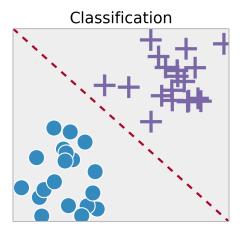
- Update the parameters
- $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} \eta \boldsymbol{g}_t$   $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{t} + 1$

How does the complexity per iteration compare with gradient descent?

# Gradient descent: mini-summary

- Batch gradient descent computes the exact gradient.
- Stochastic gradient descent approximates the gradient with a single data point; Its expectation equals the true gradient.
- Mini-batch variant: trade-off between accuracy of estimating gradient and computational cost
- Similar ideas extend to other ML optimization problems.
  - For large-scale problems, stochastic gradient descent often works well.

# Classification



## Recall: Loss function

- Suppose we made a prediction  $\hat{Y} = f(X) \in \mathcal{Y}$  based on observation of X.
- How good is the prediction? We can use a **loss function**  $L: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}^+$  to formalize the quality of the prediction.
- Typical loss functions:
  - Squared loss for regression

$$L(Y, f(X)) = (f(X) - Y)^{2}.$$

Absolute loss for regression

$$L(Y, f(X)) = |f(X) - Y|.$$

• Misclassification loss (or 0-1 loss) for classification

$$L(Y, f(X)) = \begin{cases} 0 & f(X) = Y \\ 1 & f(X) \neq Y \end{cases}.$$

Many other choices are possible, e.g., weighted misclassification loss.

• In classification, if estimated probabilities  $\hat{p}(k)$  for each class  $k \in \mathcal{Y}$  are returned, **log-likelihood loss** (or **log loss**)  $L(Y,\hat{p}) = -\log \hat{p}(Y)$  is often used.

# The Bayes Classifier

- What is the optimal classifier if the joint distribution (X,Y) were known?
- The density g of X can be written as a mixture of K components (corresponding to each of the classes):

$$g(x) = \sum_{k=1}^{K} \pi_k g_k(x),$$

where, for  $k = 1, \ldots, K$ ,

- $\mathbb{P}(Y=k)=\pi_k$  are the class probabilities,
- $g_k(x)$  is the conditional density of X, given Y = k.
- The Bayes classifier  $f_{\mathsf{Bayes}}: x \mapsto \{1, \dots, K\}$  is the one with minimum risk:

$$R(f) = \mathbb{E}\left[L(Y, f(X))\right] = \mathbb{E}_X \left[\mathbb{E}_{Y|X}[L(Y, f(X))|X]\right]$$
$$= \int_{\mathcal{X}} \mathbb{E}\left[L(Y, f(X))|X = x\right] g(x) dx$$

- The minimum risk attained by the Bayes classifier is called Bayes risk.
- Minimizing  $\mathbb{E}[L(Y, f(X))|X = x]$  separately for each x suffices.

# The Bayes Classifier

- Consider the 0-1 loss.
- The risk simplifies to:

$$\mathbb{E}\Big[L(Y, f(X))\big|X = x\Big] = \sum_{k=1}^{K} L(k, f(x))\mathbb{P}(Y = k|X = x)$$
$$= 1 - \mathbb{P}(Y = f(x)|X = x)$$

 The risk is minimized by choosing the class with the greatest probability given the observation:

$$\begin{split} f_{\mathsf{Bayes}}(x) &= & \arg\max_{k=1,...,K} \mathbb{P}(Y=k|X=x) \\ &= & \arg\max_{k=1,...,K} \frac{\pi_k g_k(x)}{\sum_{i=1}^K \pi_i g_i(x)} = \arg\max_{k=1,...,K} \, \pi_k g_k(x). \end{split}$$

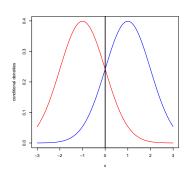
• The functions  $x \mapsto \pi_k g_k(x)$  are called **discriminant functions**. The discriminant function with maximum value determines the predicted class of x.

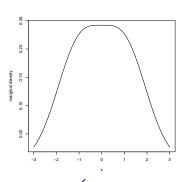
# The Bayes Classifier: Example

A simple two Gaussians example: Suppose  $X \sim \mathcal{N}(\mu_Y, 1)$ , where  $\mu_1 = -1$ and  $\mu_2 = 1$  and assume equal class probabilities  $\pi_1 = \pi_2 = 1/2$ .

$$g_1(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x+1)^2}{2}\right)$$
 and  $g_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{2}\right)$ .

$$g_2(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-1)^2}{2}\right)$$

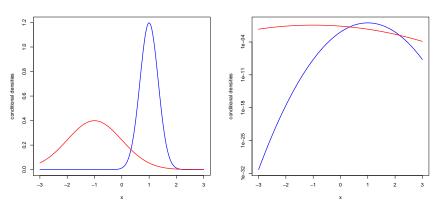




Optimal classification is 
$$f_{\mathsf{Bayes}}(x) = \underset{k=1,\dots,K}{\operatorname{arg\,max}} \ \pi_k g_k(x) = \begin{cases} 1 & \text{if } x < 0, \\ 2 & \text{if } x \geq 0. \end{cases}$$

# The Bayes Classifier: Example

How do you classify a new observation x if now the standard deviation is still 1 for class 1 but 1/3 for class 2?



Looking at density in a log-scale, optimal classification is to select class 2 if and only if  $x \in [0.34, 2.16]$ .

# Plug-in Classification

The Bayes Classifier:

$$f_{\text{Bayes}}(x) = \underset{k=1,...,K}{\operatorname{arg max}} \pi_k g_k(x).$$

- We know neither the conditional densities  $g_k$  nor the class probabilities  $\pi_k!$
- The plug-in classifier chooses the class

$$f(x) = \underset{k=1,\dots,K}{\arg\max} \, \hat{\pi}_k \hat{g}_k(x),$$

- where we plugged in
  - estimates  $\hat{\pi}_k$  of  $\pi_k$  and  $k = 1, \dots, K$  and
  - estimates  $\hat{g}_k(x)$  of conditional densities,
- Linear Discriminant Analysis is an example of plug-in classification.