Statistical Machine Learning Hilary Term 2019

Pier Francesco Palamara

Department of Statistics University of Oxford

Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/SML19.html

January 23, 2019

Summary: PCA

PCA

Find an orthogonal basis $\{v_1, v_2, \dots, v_p\}$ for the data space such that:

- The first principal component (PC) v_1 is the **direction of greatest** variance of data.
- The *j*-th PC v_j is the direction orthogonal to $v_1, v_2, \ldots, v_{j-1}$ of greatest variance, for $j = 2, \ldots, p$.
- Eigendecomposition of the sample covariance matrix $S = \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^{\top}$.

 $S = V\Lambda V^{\top}.$

- Λ is a diagonal matrix with eigenvalues (variances along each principal component) λ₁ ≥ λ₂ ≥ · · · ≥ λ_p ≥ 0
- *V* is a $p \times p$ orthogonal matrix whose columns are the *p* eigenvectors of *S*, i.e. the principal components v_1, \ldots, v_p
- Dimensionality reduction by projecting $x_i \in \mathbb{R}^p$ onto first k principal components:

$$z_i = \left[v_1^\top x_i, \dots, v_k^\top x_i\right]^\top \in \mathbb{R}^k.$$

PCA and SVD

Summary: PCA

$$S = \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^{\top} = \frac{1}{n-1} \mathbf{X}^{\top} \mathbf{X}.$$

• S is a real and symmetric matrix, so there exist p eigenvectors v_1, \ldots, v_p that are pairwise orthogonal and p associated eigenvalues $\lambda_1, \ldots, \lambda_n$ which satisfy the eigenvalue equation $Sv_i = \lambda_i v_i$. In particular, V is an orthogonal matrix:

$$VV^{\top} = V^{\top}V = I_p.$$

S is a positive-semidefinite matrix, so the eigenvalues are non-negative:

 $\lambda_i > 0, \forall i.$

Why is S symmetric? Why is S positive-semidefinite? **Reminder:** A symmetric $p \times p$ matrix R is said to be positive-semidefinite if

 $\forall a \in \mathbb{R}^p, a^\top Ra \geq 0.$

Singular Value Decomposition (SVD)

SVD

Any real-valued $n \times p$ matrix **X** can be written as $X = UDV^{\top}$ where

- U is an $n \times n$ orthogonal matrix: $UU^{\top} = U^{\top}U = I_n$
- D is a $n \times p$ matrix with decreasing **non-negative** elements on the diagonal (the singular values) and zero off-diagonal elements.
- V is a $p \times p$ orthogonal matrix: $VV^{\top} = V^{\top}V = I_n$
- SVD always exists, even for non-square matrices.
- Fast and numerically stable algorithms for SVD are available in most packages. The relevant R command is svd.

SVD and PCA

- Let $\mathbf{X} = UDV^{\top}$ be the SVD of the $n \times p$ data matrix \mathbf{X} .
- Note that

 $(n-1)S = \mathbf{X}^{\top}\mathbf{X} = (UDV^{\top})^{\top}(UDV^{\top}) = VD^{\top}U^{\top}UDV^{\top} = VD^{\top}DV^{\top},$

using orthogonality $(U^{\top}U = I_n)$ of U.

- The eigenvalues of S are thus the diagonal entries of $\Lambda = \frac{1}{n-1}D^{\top}D$.
- We also have (using orthogonality $V^{\top}V = I_p$)

 $\mathbf{X}\mathbf{X}^{\top} = (UDV^{\top})(UDV^{\top})^{\top} = UDV^{\top}VD^{\top}U^{\top} = UDD^{\top}U^{\top},$

Gram matrix

 $\mathbf{B} = \mathbf{X}\mathbf{X}^{\top}, \mathbf{B}_{ij} = x_i^{\top}x_j$ is called the Gram matrix of dataset \mathbf{X} . \mathbf{B} and $(n-1)S = \mathbf{X}^{\top}\mathbf{X}$ have the same nonzero eigenvalues, equal to the non-zero squared singular values of \mathbf{X} .

Projection:

$$\mathbf{Z} = \mathbf{X}V = UDV^{\top}V = UD.$$

Can be obtain by eigendecomposition of **B**, less computation if p > n.

> biplot(Crabs.pca,scale=1)

- PCA plots show the data items (rows of X) in the space spanned by PCs.
- Biplots allow us to visualize the original variables X⁽¹⁾,..., X^(p) (corresponding to columns of X) in the same plot.

Recall that $X = [X^{(1)}, \dots, X^{(p)}]^{\top}$ and $\mathbf{X} = UDV^{\top}$ is the SVD of the data matrix.

• The 'full' PC projection of x_i is the *i*-th row of UD:

 $z_i = V^{\top} x_i = D^{\top} U_i^{\top}$, equivalently: $\mathbf{X} V = U D$.

• The *j*-th unit vector $\mathbf{e}_j \in \mathbb{R}^p$ points in the direction of the original variable $X^{(j)}$. Its PC projection η_j is:

 $\eta_j = V^\top \mathbf{e}_j = V_j^\top$ (the *j*-th row of *V*)

- The projection of \mathbf{e}_j indicates the weighting each PC gives to the original variable $X^{(j)}$.
- Dot products between these projections give entries of the data matrix:

$$x_{ij} = \sum_{k=1}^{\min\{n,p\}} U_{ik} D_{kk} V_{jk} = \langle D^{\top} U_i^{\top}, V_j^{\top} \rangle = \langle z_i, \eta_j \rangle.$$

 Biplots focus on the first two PCs and the quality depends on the proportion of variance explained by the first two PCs.

Iris Data

50 samples from each of the 3 species of iris: setosa, versicolor, and virginica

Each measuring the length and widths of both sepal and petals

Collected by E. Anderson (1935) and analysed by R.A. Fisher (1936)

Iris Data

>	data(iris)											
>	ris[sample(150,20),]											
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species							
54	5.5	2.3	4.0	1.3	versicolor							
33	5.2	4.1	1.5	0.1	setosa							
30	4.7	3.2	1.6	0.2	setosa							
73	6.3	2.5	4.9	1.5	versicolor							
10	7 4.9	2.5	4.5	1.7	virginica							
4	4.6	3.1	1.5	0.2	setosa							
90	5.5	2.5	4.0	1.3	versicolor							
83	5.8	2.7	3.9	1.2	versicolor							
50	5.0	3.3	1.4	0.2	setosa							
92	6.1	3.0	4.6	1.4	versicolor							
12	8 6.1	3.0	4.9	1.8	virginica							
57	6.3	3.3	4.7	1.6	versicolor							
9	4.4	2.9	1.4	0.2	setosa							
2	4.9	3.0	1.4	0.2	setosa							
86	6.0	3.4	4.5	1.6	versicolor							
66	6.7	3.1	4.4	1.4	versicolor							
85	5.4	3.0	4.5	1.5	versicolor							
14	7 6.3	2.5	5.0	1.9	virginica							
8	5.0	3.4	1.5	0.2	setosa							
41	5.0	3.5	1.3	0.3	setosa							

Iris data biplot

- > iris.pca<-princomp(iris[,-5],cor=TRUE)</pre>
- > biplot(iris.pca,scale=0)

There are other projections we can consider for biplots (assuming *p* < *n* to simplify notation):

$$x_{ij} = \sum_{k=1}^{p} U_{ik} D_{kk} V_{jk} = \langle D_{1:p,1:p}^{\top} U_{i,1:p}^{\top}, V_{j}^{\top} \rangle = \langle D_{1:p,1:p}^{1-\alpha} U_{i,1:p}^{\top}, D_{1:p,1:p}^{\alpha} V_{j}^{\top} \rangle.$$

where $0 \le \alpha \le 1$, i.e., we change representation to

$$\tilde{z}_i = D_{1:p,1:p}^{1-\alpha} U_{i,1:p}^{\top}, \ \tilde{\eta}_j = D_{1:p,1:p}^{\alpha} V_j^{\top}$$

• case $\alpha = 1$:

Sample covariance of the projected points is:

$$\widehat{\operatorname{Cov}}\left(\widetilde{Z}\right) = \frac{1}{n-1} U_{1:n,1:p}^{\top} U_{1:n,1:p} = \frac{1}{n-1} I_p.$$

Projected points are uncorrelated and dimensions are equi-variance.

• Sample covariance between $X^{(i)}$ and $X^{(j)}$ is:

$$\hat{\mathbb{E}}(X^{(i)}X^{(j)}) = \frac{1}{n-1} \left(V D^{\top} D V^{\top} \right)_{i,j} = \frac{1}{n-1} \langle D_{1:p,1:p} V_i^{\top}, D_{1:p,1:p} V_j^{\top} \rangle$$

The angle between the projected variables maps to their correlation.

Iris Data biplot - scaled

```
> ?biplot
```

```
. . .
```

scale: The variables are scaled by lambda ^ scale and the observations are scaled by lambda ^ (1-scale) where lambda are the singular values as computed by princomp. (default=1)

```
. . .
```

> biplot(iris.pca,scale=1)

Comp.1

Crabs Data biplots

> biplot(Crabs.pca,scale=0)

> biplot(Crabs.pca,scale=1)

Biplots

US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

```
pairs(USArrests)
usarrests.pca <- princomp(USArrests,cor=T)
plot(usarrests.pca)</pre>
```

pairs(predict(usarrests.pca))
biplot(usarrests.pca)

US Arrests Data Pairs Plot

> pairs(USArrests)

US Arrests Data Biplot

> biplot(usarrests.pca, scale=1)

Suppose there are *n* points **X** in \mathbb{R}^p , but we are only given the $n \times n$ matrix **D** of inter-point distances.

Can we reconstruct X?

Rigid transformations (translations, rotations and reflections) do not change inter-point distances so cannot recover \mathbf{X} exactly. However \mathbf{X} can be recovered up to these transformations!

• Let $d_{ij} = ||x_i - x_j||_2$ be the distance between points x_i and x_j .

$$\begin{aligned} d_{ij}^2 &= \|x_i - x_j\|_2^2 \\ &= (x_i - x_j)^\top (x_i - x_j) \\ &= x_i^\top x_i + x_j^\top x_j - 2x_i^\top x_j \end{aligned}$$

- Let $\mathbf{B} = \mathbf{X}\mathbf{X}^{\top}$ be the $n \times n$ matrix of dot-products, $b_{ij} = x_i^{\top}x_j$. The above shows that \mathbf{D} can be computed from \mathbf{B} .
- Some algebraic exercise shows that **B** can be recovered from **D** if we assume $\sum_{i=1}^{n} x_i = 0$.

- If we knew X, then SVD gives $\mathbf{X} = UDV^{\top}$. As X has rank at most $r = \min(n, p)$, we have at most r non-zero singular values in D and we can assume $U \in \mathbb{R}^{n \times r}$, $D \in \mathbb{R}^{r \times r}$ and $V^{\top} \in \mathbb{R}^{r \times p}$.
- The eigendecomposition of **B** is then:

 $\mathbf{B} = \mathbf{X}\mathbf{X}^{\top} = UD^2U^{\top} = U\Lambda U^{\top}.$

- This eigendecomposition can be obtained from **B** without knowing **X**!
- Let $\tilde{x}_i^{\top} = U_i \Lambda^{\frac{1}{2}} \in \mathbb{R}^r$. If r < p, pad \tilde{x}_i with 0s so that it has length p. Then,

$$\tilde{x}_i^\top \tilde{x}_j = U_i \Lambda U_j^\top = b_{ij} = x_i^\top x_j$$

and we have found a set of vectors with dot-products given by ${\bf B},$ as desired.

• The vectors \tilde{x}_i differs from x_i only via the orthogonal matrix V^{\top} (recall that $x_i^{\top} = U_i D V^{\top} = \tilde{x}_i^{\top} V^{\top}$) so are equivalent up to rotation and reflections.

US City Flight Distances

We present a table of flying mileages between 10 American cities, distances calculated from our 2-dimensional world. Using D as the starting point, metric MDS finds a configuration with the same distance matrix.

ATLA	CHIG	DENV	HOUS	LA	MIAM	NY	SF	SEAT	DC
0	587	1212	701	1936	604	748	2139	2182	543
587	0	920	940	1745	1188	713	1858	1737	597
1212	920	0	879	831	1726	1631	949	1021	1494
701	940	879	0	1374	968	1420	1645	1891	1220
1936	1745	831	1374	0	2339	2451	347	959	2300
604	1188	1726	968	2339	0	1092	2594	2734	923
748	713	1631	1420	2451	1092	0	2571	2408	205
2139	1858	949	1645	347	2594	2571	0	678	2442
2182	1737	1021	1891	959	2734	2408	678	0	2329
543	597	1494	1220	2300	923	205	2442	2329	0

US City Flight Distances

library(MASS)

us <- read.csv("http://www.stats.ox.ac.uk/~palamara/teaching/SML19/uscities.csv")

use classical MDS to find lower dimensional views of the data
recover X in 2 dimensions

```
us.classical <- cmdscale(d=us,k=2)
plot(us.classical)
text(us.classical,labels=names(us))</pre>
```

US City Flight Distances

Lower-dimensional Reconstructions

In classical MDS derivation, we used all eigenvalues in the eigendecomposition of **B** to reconstruct

 $\tilde{x}_i = U_i \Lambda^{\frac{1}{2}}$.

We can use only the largest $k < \min(n, p)$ eigenvalues and eigenvectors in the reconstruction, giving the 'best' k-dimensional view of the data.

This is analogous to PCA, where only the largest eigenvalues of $\mathbf{X}^{\top}\mathbf{X}$ are used, and the smallest ones effectively suppressed.

Indeed, PCA and classical MDS are duals and yield effectively the same result.

Crabs Data

```
library(MASS)
crabs$spsex=paste(crabs$sp,crabs$sex,sep="")
varnames<-c('FL','RW','CL','CW','BD')
Crabs <- crabs[,varnames]
Crabs.class <- factor(crabs$spsex)
crabsmds <- cmdscale(d= dist(Crabs),k=2)
plot(crabsmds, pch=20, cex=2,col=unclass(Crabs.class))</pre>
```


MDS 1

Crabs Data

Compare with previous PCA analysis. Classical MDS solution corresponds to the first 2 PCs.

Varieties of MDS

Generally, MDS is a class of dimensionality reduction techniques which represents data points $x_1, \ldots, x_n \in \mathbb{R}^p$ in a lower-dimensional space $z_1, \ldots, z_n \in \mathbb{R}^k$ which tries to preserve inter-point (dis)similarities.

- It requires only the matrix **D** of pairwise dissimilarities $d_{ij} = d(x_i, x_j)$. For example, we can use Euclidean distance $d_{ij} = ||x_i x_j||_2$, but other dissimilarities are possible.
- MDS finds representations $z_1, \ldots, z_n \in \mathbb{R}^k$ such that

$$||z_i - z_j||_2 \approx d(x_i, x_j) = d_{ij},$$

and differences in dissimilarities are measured by the appropriate loss $\Delta(d_{ij}, ||z_i - z_j||_2)$.

• Goal: Find Z which minimizes the stress function

$$S(\mathbf{Z}) = \sum_{i \neq j} \Delta(d_{ij}, ||z_i - z_j||_2).$$

Varieties of MDS

- Choices of (dis)similarities and stress functions $S(\mathbf{Z})$ lead to different algorithms.
 - Classical/Torgerson: preserves inner products instead strain function (cmdscale)

$$S(\mathbf{Z}) = \sum_{i \neq j} (b_{ij} - \langle z_i - \bar{z}, z_j - \bar{z} \rangle)^2$$

• Metric Shephard-Kruskal: preserves distances w.r.t. squared stress

$$S(\mathbf{Z}) = \sum_{i \neq j} (d_{ij} - \|z_i - z_j\|_2)^2$$

• Sammon: preserves shorter distances more (sammon)

$$S(\mathbf{Z}) = \sum_{i \neq j} \frac{(d_{ij} - ||z_i - z_j||_2)^2}{d_{ij}}$$

 Non-Metric Shephard-Kruskal: ignores actual distance values, only preserves ranks (isoMDS)

$$S(\mathbf{Z}) = \min_{g \text{ increasing}} \frac{\sum_{i \neq j} (g(d_{ij}) - ||z_i - z_j||_2)^2}{\sum_{i \neq j} ||z_i - z_j||_2^2}$$

Example: Language data

Presence or absence of 2867 homologous traits in 87 Indo-European languages.

```
> X<-read.table("http://www.stats.ox.ac.uk/~palamara/teaching/SML19/cognate.txt")
> X[1:15,1:16]
```

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16
Irish_A	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Irish_B	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Welsh_N	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Welsh_C	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Breton_List	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Breton_SE	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Breton_ST	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Romanian_List	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vlach	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Italian	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ladin	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Provencal	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
French	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Walloon	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
French_Creole_C	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Example: Language data

Using MDS with non-metric (Sammon) scaling.

Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:

- To visualize the (dis)similarities among items in a dataset, where these (dis)disimilarities may not have Euclidean geometric interpretations.
- To perform **nonlinear** dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure ("live on a low-dimensional menifold").

Isomap

Isomap

Isomap is a non-linear dimensional reduction technique based on classical MDS. Differs from other MDSs as it uses estimates of **geodesic distances** between the data points.

Tenenbaum et al. (2000)

Isomap

Isomap

Isomap

- Calculate Euclidean distances D_{ij} for i, j = 1,..., n between all data points.
- Form a graph *G* with *n* samples as nodes, and edges between the respective *K* nearest neighbours (*K*-Isomap) or between *i* and *j* if $D_{ij} < \epsilon$ (ϵ -Isomap).
- For i, j linked by an edge, set $\mathbf{D}_{ij}^G = \mathbf{D}_{ij}$. Otherwise, set \mathbf{D}_{ij}^G to be the shortest-path distance between i and j in G.

Run classical MDS using distances D^G_{ij}.

R function: isomap{vegan}.

Isomap

Faces

Handwritten Characters

