Statistical Machine Learning
Hilary Term 2019

Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at:

http://www.stats.ox.ac.uk/~palamara/SML19.html

March 8, 2019

http://www.stats.ox.ac.uk/~palamara/SML19.html

Learning Ensembles

@ Learn multiple alternative definitions of a concept using different training
data or different learning algorithms.

@ Combine decisions of multiple definitions, (e.g. using weighted voting).

Training Data

........

Model Combiner Final Model

Three fundamental reasons for good ensembles

@ It is desirable to build good ensembles for three fundamental reasons.
(Dietterich, 2000):
o Statistical: if little data
e Computational: enough data, but local optima produced by local search
o Representational: when the true function f cannot be represented by any of
the hypothesis in # (weighted sums of hypotheses drawn from #H might
expand the space)

Three fundamental reasons for good ensembles

@ It is desirable to build good ensembles for three fundamental reasons.
(Dietterich, 2000):

Statistical Computational

Representational

o f

Value of Ensembles

@ “No Free Lunch” Theorem
@ No single algorithm wins all the time
@ When combining multiple independent and diverse decisions each of
which is at least more accurate than random guessing, random errors
cancel each other out, correct decisions are reinforced.
@ Examples: Human ensembles are demonstrably better

e How many jelly beans in the jar?: Individual estimates vs. group average.
e Who want to be a millionaire: Audience vote.

Homogeneous Ensembles

@ Use a single arbitrary learning algorithm, but manipulate training data to
make it learn multiple models.

o Data1 #Data2 # --- # Datam
o Lerner1 =Lerner2 =-..=Lernerm
@ In this course, we consider two methods of this kind:

e Bagging: Resample training data (last time)
@ Boosting: Reweight training data (today)

Approach: Bagging (Boostrap + Aggregating)

@ Create ensembles by “bootstrap aggregation”, (i.e., repeatedly randomly
resampling the training data) to generate training sets (Breiman, 1996).

@ Bootstrap: draw N data points with replacement from original data set of
size N.

@ For each resampled data set, train base learners using an unstable’
learning procedure (like decision trees).

@ During test, combine learners by e.g. taking the average.

@ This decreases error by decreasing the variance in the results due to
unstable learners.

"Unstable algorithm: when small change in the training set causes a large difference in the
base learners (high variance).

Approach: Boosting

Weak learners vs Strong learners

@ In boosting, we actively try to generate complementary base-learners by
training the next learner on the mistakes of the previous learners. We
build a strong learner using weak learners.

@ Example: in a binary classification problem, a weak learner does at least
a bit better than random guessing, but not much better. A strong learner
has arbitrarily small error probability.

In boosting, focus is on reducing bias, rather than variance.

Approach: Boosting

History

@ In 1988 Kearns and Valiant posed the question of whether one can
“boost” a weak learner to a strong learner.

@ Two years later Rob Schapire published his landmark paper “The
Strength of Weak Learnability” closing the theoretical question by
providing the first “boosting” algorithm.

@ Schapire and Yoav Freund worked together for the next few years to
produce a simpler and more versatile algorithm called Adaboost.

@ They received the 2003 Gddel Prize. “Best off-the-shelf classifier in the
world” (Breiman 1998).

AdaBoost: Overview

@ Adaptive Boosting (AdaBoost)

@ As in bagging, we will use the same training set over and over.

@ Classifiers must be “simple” (i.e. weak) so they do not overfit.

@ Can combine an arbitrary number of base learners. (parameters)

@ When testing, given an instance, all the classifiers make predictions and
a weighted vote is taken.

@ The weights are proportional to the base learners’ accuracies on the
training set.

Probably Approximately Correct (PAC)

@ Definition: PAC (not examinable)
An algorithm A(e, 9) is said to PAC-learn the concept class # over the set
X if, for any distribution D over X and for any 0 < ¢,6 < 1/2 and for any
target concept ¢ € H, the probability that A produces a hypothesis h of
error at most e is at least 1 — ¢. In symbols, Pp(err.p(h) <¢e) >1—94.
Moreover, A must run in time polynomial in 1/¢,1/§ and n, where n is the
size of an element x € X.

@ Weak PAC-learning model requires the algorithm to have accuracy that is
slightly better than random guessing. That is the algorithm will output a
classification function which will correctly classify a random label with
probability at least £ + n for some small, but fixed, 5 > 0.

We call an algorithm that produces PAC guarantees a strong learner, while
an algorithm with the latter guarantees is called a weak learner.

Strong and Weak PAC-learning

@ It turns out that strong learning and weak learning are equivalents! We
can obtain a strong learner by combining weak learners. How?

@ We can maintain a large number of separate instances of the weak
learner, run them on our dataset, and then combine their hypotheses with
a majority vote.

Strong learners from weak learners

@ This is a bit too simplistic: what if the majority of the weak learners are
wrong?

@ We can do better:

Instead of taking a majority vote, we can take a weighted majority vote.

@ That is, give the weak learner a random subset of your data, and then
test its hypothesis on the data to get a good estimate of its error.

@ Then you can use this error to say whether the hypothesis is any good,
and give good hypotheses high weight and bad hypotheses low weight
(proportionally to the error).

@ Then the “boosted” hypothesis would take a weighted majority vote of all
hypotheses on an example.

Strong learners from weak learners

@ Rather than use the estimated error just to say something about the
hypothesis, we can identify the mislabeled examples in a round and
somehow encourage A to do better at classifying those examples in later
rounds.

@ This turns out to be the key insight, and it's why the algorithm is called
AdaBoost. (Ada stands for “adaptive”).

@ We are adaptively modifying the distribution over the training data we
feed to A based on which data A learns “easily” and which it does not.

@ So as the boosting algorithm runs, the distribution given to A has more
and more probability weight on the examples that A misclassified.

Assessed practical MEGEEERES

Adaboost Algorithm

e Given: N samples {z,,y,}, where y,, € {+1, —1}, and some way of
constructing weak (or base) classifiers.

@ Notation: we indicate the weak learner using h(-).

@ Initialize weights w; (n) = %, for every training sample
@ Fort=1toT

@ Train a weak classifier h;(x) using current weights w;(n), by minimizing the
weighted classification error

=Y wi(n)lyn # hu(@n)]
@ Compute contribution for this classifier: 8; = £ In ==

© Update weights on training points

wit1(n) o< wy (n)e_ﬁtynht(zn)

and normalize them such that)~ w;1(n) =1
@ Output the final classifier

T
hlz] = sign [Z Btht(m)‘|

Assessed practical MEGEEERES

Example

10 data points and 2 features

@ The data points are clearly not linear separable
@ In the beginning, all data points have equal weights (the size of the data
markers “+” or “-”)
@ Base classifier i(-): either horizontal or vertical lines
e These 'decision stumps’ are just trees with a single internal node, i.e., they
classifying data based on a single attribute

‘AdaBoost
Round1:t=1

h

@ 3 misclassified (with circles): e; = 0.3 — 51 = 0.42.

@ Weights recomputed; the 3 misclassified data points receive larger
weights

‘AdaBoost
Round 2: t =2

@ 3 misclassified (with circles): e; = 0.21 — §5 = 0.65.
Note that ¢ # 0.3 as those 3 data points have weights less than 1/10

@ 3 misclassified data points get larger weights
@ Data points classified correctly in both rounds have small weights

Assessed practical MEGEEERES

Round 3: ¢t =3

@ 3 misclassified (with circles): e = 0.14 — 5 = 0.92.
@ Previously correctly classified data points are now misclassified, hence
our error is low; what’s the intuition?

@ Since they have been consistently classified correctly, this round’s mistake
will hopefully not have a huge impact on the overall prediction

NI M |AdaBoost

Final classifier: combining 3 classifiers

H_ =sign | 042 +0.65 +0.92
final

@ All data points are now classified correctly!

STEERRIEE (M | Derivation of AdaBoost

Why AdaBoost works?

It minimizes a loss function related to classification error.
Classification loss
@ Suppose we want to have a classifier

h(z) = sign[f(z)] = { 1 i f(z) >0

-1 if f(x) <0

@ Our loss function is thus
[0 ifyf(x)>0
K(h(az),y) = { 1 if yf(a:) <0

Namely, the function f(x) and the target label y should have the same
sign to avoid a loss of 1.

STEERRIEE (M | Derivation of AdaBoost

Surrogate loss

As we discussed for logistic regression, the 0 — 1 loss function ¢(h(x), y) is
non-convex and difficult to optimize. But as we did with logistic regression, we
can come up with a tractable approximation of the 0 — 1 loss:
Exponential Loss

(5 (h(@),y) = e @

(X" (h(x),y) is easier to handle numerically as it is differentiable
t(h(z),y)

lo =4 N w » o N ®

N
o
N
IS
o

8 0

;
yf(x)

STEERRIEE (M | Derivation of AdaBoost

Choosing the ¢-th classifier

Suppose we have built a classifier f;_;(x), and we want to improve it by
adding a weak learner h;(x)

f(@) = fia(®) + Bihi()

How can we choose optimally the new classifier /;(x) and the combination
coefficient 5,7
Adaboost greedily minimizes the exponential loss function.

(hi (), ;) = argmin Y e ¥n(@n)
(ht(m)ﬁt)zn:
= argmin e Unlfio1(@n)+Bihi(n)]

(he(x),Bt) n

= argmjn Wy (n)e—ynﬁtht(mn)
(he(@),60) Zn:

where we have used w;(n) as a shorthand for e~ ¥»/t-1(x)

The new classifier

We can decompose the weighted loss function into two parts
Zwt n)e " YnBili(@n)
_ Zwt)ePTyn # he(an)] + Zwt e Py = hy(an)]
_ Zwt)ePTyn #£ he(an)] + Zwt e P (1 —Tyn # he(an)])
Zwt Lyn # hi(zn)] + e Btzwt

We have used the following properties to derive the above
@ y,hi(x,) is either 1 or -1 as h;(x,,) is the output of a binary classifier

@ The indicator function I[y,, = h(x,)] is either 0 or 1, so it equals
1 =1y, # he(xn)]

Finding the optimal weak learner

Summary

(h:(m)76:) = argmin Zwt(n)e*ynﬂtht(mn)
(ht(w)’ﬁt) n

= argmin (e Z wi(n)yn 7# he(Tn)]

(he(x),B:)
+ e_Bt Z we(n)

What term(s) must we optimize to choose h;(x,)?

h:() = argmin ¢; = Zwt yn # ht(iBn)]

hi(x)

Minimize weighted classification error as noted in step 1 of Adaboost!

STEERRIEE (M | Derivation of AdaBoost

How to choose 3;?

Summary

(hi(x),B)) = argmin Zwt(n)e—ynﬂtht(m")
(he(),Bt) n

= argmin (e wi(n)yn # hi(zn)]
(he(z),Be) Z
+ e_B‘ Z we(n)
What term(s) must we optimize?

We need to minimize the entire objective function with respect to 5;!

We can do this by taking derivative with respect to 3;, setting to zero, and
solving for 3,. After some calculation and using > w;(n) = 1, we find:

which is precisely step 2 of Adaboost! (Exercise — verify the solution)

STEERRIEE (M | Derivation of AdaBoost

Updating the weights

Once we find the optimal weak learner we can update our classifier:

f(x) = fioa(x) + Bihi ()
We then need to compute the weights for the above classifier as:

Wit (n) = e~V @n) — o=valfior @487 A (@)

_ B (o) _ | we(n)ePt ity # hi(x,)
wi(n)e { wi(n)e Peify, = hi(x,)

Intuition Misclassified data points will get their weights increased, while
correctly classified data points will get their weight decreased

STEERRIEE (M | Derivation of AdaBoost

Meta-Algorithm

Note that the AdaBoost algorithm itself never specifies how we would get
h¥(x) as long as it minimizes the weighted classification error

€t = Zwt Myn # hi(Tn)]

In this aspect, the AdaBoost algorithm is a meta-algorithm and can be used
with any type of classifier

STEERRIEE (M | Derivation of AdaBoost

E.g., Decision Stumps

How do we choose the decision stump classifier given the weights at the
second round of the following distribution?

@ Presort data by each feature in O(dN log N) time

@ Evaluate N + 1 thresholds for each feature at each round in O(dN) time

@ In total O(dN log N + dNT) time — this efficiency is an attractive quality of
boosting!

STEERRIEE (M | Derivation of AdaBoost

Interpreting boosting as learning nonlinear basis

23« Example from Murphy, p.560; generating script written by R.Stapenhurst

STEERRIEE (M | Derivation of AdaBoost

Example: Netflix

NETFLIX

@ The Netflix Prize: improve the accuracy of predictions about how much
someone is going to love a movie based on their movie preferences.

@ http://www.netflixprize.com
@ Training data is a set of users and past ratings (1 to 5 stars).
@ Construct a classifier that predicts user rating for unrated movies.

@ Winning team (BellKor's Pragmatic Chaos) employed boosting. They
received 1M$.

FIN

.
Syllabus |

Part I: Introduction to unsupervised learning
@ Dimensionality reduction

e Principal component analysis, SVD, Biplots, Multidimensional scaling,
Isomap

@ Clustering

o K-means
o Hierarchical clustering

.
Syllabus |l

Part Il: Supervised learning
@ Empirical risk minimization
@ Regression

@ Linear
@ Non-linear basis functions
e Gradient descent

@ Overfitting, cross-validation
@ Regularization
@ Bias/variance tradeoff

@ Classification

e Discriminant analysis
e Logistic regression

o Naive Bayes

e K-nearest neighbors

@ Generative vs discriminative methods
@ Performance evaluation

.
Syllabus IlI

Part Ill: Useful algorithms for supervised learning
@ Decision trees
@ Bagging/Random forests
@ Neural networks
@ Deep learning
@ Boosting

	Boosting
	Assessed practical
	AdaBoost
	Derivation of AdaBoost

	

