
Statistical Machine Learning
Hilary Term 2019

Pier Francesco Palamara

Department of Statistics
University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML19.html

March 8, 2019

http://www.stats.ox.ac.uk/~palamara/SML19.html


Assessed practical

Learning Ensembles

Learn multiple alternative definitions of a concept using different training
data or different learning algorithms.
Combine decisions of multiple definitions, (e.g. using weighted voting).



Assessed practical

Three fundamental reasons for good ensembles

It is desirable to build good ensembles for three fundamental reasons.
(Dietterich, 2000):

Statistical: if little data
Computational: enough data, but local optima produced by local search
Representational: when the true function f cannot be represented by any of
the hypothesis in H (weighted sums of hypotheses drawn from H might
expand the space)



Assessed practical

Three fundamental reasons for good ensembles

It is desirable to build good ensembles for three fundamental reasons.
(Dietterich, 2000):



Assessed practical

Value of Ensembles

“No Free Lunch” Theorem
No single algorithm wins all the time

When combining multiple independent and diverse decisions each of
which is at least more accurate than random guessing, random errors
cancel each other out, correct decisions are reinforced.
Examples: Human ensembles are demonstrably better

How many jelly beans in the jar?: Individual estimates vs. group average.
Who want to be a millionaire: Audience vote.



Assessed practical

Homogeneous Ensembles

Use a single arbitrary learning algorithm, but manipulate training data to
make it learn multiple models.

Data 1 ”= Data 2 ”= · · · ”= Data m
Lerner 1 = Lerner 2 = · · · = Lerner m

In this course, we consider two methods of this kind:
Bagging: Resample training data (last time)
Boosting: Reweight training data (today)



Assessed practical

Approach: Bagging (Boostrap + Aggregating)

Create ensembles by “bootstrap aggregation”, (i.e., repeatedly randomly
resampling the training data) to generate training sets (Breiman, 1996).
Bootstrap: draw N data points with replacement from original data set of
size N .
For each resampled data set, train base learners using an unstable1

learning procedure (like decision trees).
During test, combine learners by e.g. taking the average.
This decreases error by decreasing the variance in the results due to
unstable learners.

1Unstable algorithm: when small change in the training set causes a large difference in the
base learners (high variance).



Assessed practical

Approach: Boosting

Weak learners vs Strong learners

In boosting, we actively try to generate complementary base-learners by
training the next learner on the mistakes of the previous learners. We
build a strong learner using weak learners.
Example: in a binary classification problem, a weak learner does at least
a bit better than random guessing, but not much better. A strong learner
has arbitrarily small error probability.

In boosting, focus is on reducing bias, rather than variance.



Assessed practical

Approach: Boosting

History

In 1988 Kearns and Valiant posed the question of whether one can
“boost” a weak learner to a strong learner.
Two years later Rob Schapire published his landmark paper “The
Strength of Weak Learnability” closing the theoretical question by
providing the first “boosting” algorithm.
Schapire and Yoav Freund worked together for the next few years to
produce a simpler and more versatile algorithm called Adaboost.
They received the 2003 Gödel Prize. “Best off-the-shelf classifier in the
world” (Breiman 1998).



Assessed practical

AdaBoost: Overview

Adaptive Boosting (AdaBoost)
As in bagging, we will use the same training set over and over.
Classifiers must be “simple” (i.e. weak) so they do not overfit.
Can combine an arbitrary number of base learners. (parameters)
When testing, given an instance, all the classifiers make predictions and
a weighted vote is taken.
The weights are proportional to the base learners’ accuracies on the
training set.



Assessed practical

Probably Approximately Correct (PAC)

Definition: PAC (not examinable)
An algorithm A(‘, ”) is said to PAC-learn the concept class H over the set
X if, for any distribution D over X and for any 0 < ‘, ” < 1/2 and for any
target concept c œ H, the probability that A produces a hypothesis h of
error at most ‘ is at least 1 ≠ ”. In symbols, PD(errc,D(h) Æ ‘) > 1 ≠ ”.
Moreover, A must run in time polynomial in 1/‘, 1/” and n, where n is the
size of an element x œ X .

Weak PAC-learning model requires the algorithm to have accuracy that is
slightly better than random guessing. That is the algorithm will output a
classification function which will correctly classify a random label with
probability at least 1

2 + ÷ for some small, but fixed, ÷ > 0.

We call an algorithm that produces PAC guarantees a strong learner, while
an algorithm with the latter guarantees is called a weak learner.



Assessed practical

Strong and Weak PAC-learning

It turns out that strong learning and weak learning are equivalents! We
can obtain a strong learner by combining weak learners. How?

We can maintain a large number of separate instances of the weak
learner, run them on our dataset, and then combine their hypotheses with
a majority vote.



Assessed practical

Strong learners from weak learners

This is a bit too simplistic: what if the majority of the weak learners are
wrong?
We can do better:
Instead of taking a majority vote, we can take a weighted majority vote.
That is, give the weak learner a random subset of your data, and then
test its hypothesis on the data to get a good estimate of its error.
Then you can use this error to say whether the hypothesis is any good,
and give good hypotheses high weight and bad hypotheses low weight
(proportionally to the error).
Then the “boosted” hypothesis would take a weighted majority vote of all
hypotheses on an example.



Assessed practical

Strong learners from weak learners

Rather than use the estimated error just to say something about the
hypothesis, we can identify the mislabeled examples in a round and
somehow encourage A to do better at classifying those examples in later
rounds.
This turns out to be the key insight, and it’s why the algorithm is called
AdaBoost. (Ada stands for “adaptive”).
We are adaptively modifying the distribution over the training data we
feed to A based on which data A learns “easily” and which it does not.
So as the boosting algorithm runs, the distribution given to A has more
and more probability weight on the examples that A misclassified.



Assessed practical AdaBoost

Adaboost Algorithm
Given: N samples {xn, yn}, where yn œ {+1, ≠1}, and some way of
constructing weak (or base) classifiers.
Notation: we indicate the weak learner using h(·).
Initialize weights w1(n) = 1

N for every training sample
For t = 1 to T

1 Train a weak classifier ht(x) using current weights wt(n), by minimizing the
weighted classification error

‘t =
ÿ

n

wt(n)I[yn ”= ht(xn)]

2 Compute contribution for this classifier: —t = 1
2 ln 1≠‘t

‘t

3 Update weights on training points

wt+1(n) Ã wt(n)e≠—tynht(xn)

and normalize them such that
q

n
wt+1(n) = 1

Output the final classifier

h[x] = sign
C

Tÿ

t=1
—tht(x)

D



Assessed practical AdaBoost

Example
10 data points and 2 features

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

The data points are clearly not linear separable
In the beginning, all data points have equal weights (the size of the data
markers “+” or “-”)
Base classifier h(·): either horizontal or vertical lines

These ’decision stumps’ are just trees with a single internal node, i.e., they
classifying data based on a single attribute



Assessed practical AdaBoost

Round 1: t = 1
Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

3 misclassified (with circles): ‘1 = 0.3 æ —1 = 0.42.
Weights recomputed; the 3 misclassified data points receive larger
weights



Assessed practical AdaBoost

Round 2: t = 2
Round 2Round 2Round 2Round 2Round 2

!

"2
2

=0.21
=0.65

h2 3D

3 misclassified (with circles): ‘2 = 0.21 æ —2 = 0.65.
Note that ‘2 ”= 0.3 as those 3 data points have weights less than 1/10
3 misclassified data points get larger weights
Data points classified correctly in both rounds have small weights



Assessed practical AdaBoost

Round 3: t = 3
Round 3Round 3Round 3Round 3Round 3

h3

!

"3
3=0.92
=0.14

3 misclassified (with circles): ‘3 = 0.14 æ —3 = 0.92.
Previously correctly classified data points are now misclassified, hence
our error is low; what’s the intuition?

Since they have been consistently classified correctly, this round’s mistake
will hopefully not have a huge impact on the overall prediction



Assessed practical AdaBoost

Final classifier: combining 3 classifiers
Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

All data points are now classified correctly!



Assessed practical Derivation of AdaBoost

Why AdaBoost works?

It minimizes a loss function related to classification error.
Classification loss

Suppose we want to have a classifier

h(x) = sign[f(x)] =
;

1 if f(x) > 0
≠1 if f(x) < 0

Our loss function is thus

¸(h(x), y) =
;

0 if yf(x) > 0
1 if yf(x) < 0

Namely, the function f(x) and the target label y should have the same
sign to avoid a loss of 1.



Assessed practical Derivation of AdaBoost

Surrogate loss
As we discussed for logistic regression, the 0 ≠ 1 loss function ¸(h(x), y) is
non-convex and difficult to optimize. But as we did with logistic regression, we
can come up with a tractable approximation of the 0 ≠ 1 loss:
Exponential Loss

¸EXP(h(x), y) = e≠yf(x)

¸EXP(h(x), y) is easier to handle numerically as it is differentiable

ï2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

yf(x)

�(h(x), y)



Assessed practical Derivation of AdaBoost

Choosing the t-th classifier

Suppose we have built a classifier ft≠1(x), and we want to improve it by
adding a weak learner ht(x)

f(x) = ft≠1(x) + —tht(x)

How can we choose optimally the new classifier ht(x) and the combination
coefficient —t?
Adaboost greedily minimizes the exponential loss function.

(hú
t (x), —ú

t ) = argmin
(ht(x),—t)

ÿ

n

e≠ynf(xn)

= argmin
(ht(x),—t)

ÿ

n

e≠yn[ft≠1(xn)+—tht(xn)]

= argmin
(ht(x),—t)

ÿ

n

wt(n)e≠yn—tht(xn)

where we have used wt(n) as a shorthand for e≠ynft≠1(xn)



Assessed practical Derivation of AdaBoost

The new classifier

We can decompose the weighted loss function into two parts
ÿ

n

wt(n)e≠yn—tht(xn)

=
ÿ

n

wt(n)e—tI[yn ”= ht(xn)] +
ÿ

n

wt(n)e≠—tI[yn = ht(xn)]

=
ÿ

n

wt(n)e—tI[yn ”= ht(xn)] +
ÿ

n

wt(n)e≠—t(1 ≠ I[yn ”= ht(xn)])

= (e—t ≠ e≠—t)
ÿ

n

wt(n)I[yn ”= ht(xn)] + e≠—t
ÿ

n

wt(n)

We have used the following properties to derive the above
ynht(xn) is either 1 or -1 as ht(xn) is the output of a binary classifier
The indicator function I[yn = ht(xn)] is either 0 or 1, so it equals
1 ≠ I[yn ”= ht(xn)]



Assessed practical Derivation of AdaBoost

Finding the optimal weak learner

Summary

(hú
t (x), —ú

t ) = argmin
(ht(x),—t)

ÿ

n

wt(n)e≠yn—tht(xn)

= argmin
(ht(x),—t)

(e—t ≠ e≠—t)
ÿ

n

wt(n)I[yn ”= ht(xn)]

+ e≠—t
ÿ

n

wt(n)

What term(s) must we optimize to choose ht(xn)?

hú
t (x) = argmin

ht(x)
‘t =

ÿ

n

wt(n)I[yn ”= ht(xn)]

Minimize weighted classification error as noted in step 1 of Adaboost!



Assessed practical Derivation of AdaBoost

How to choose —t?
Summary

(hú
t (x), —ú

t ) = argmin
(ht(x),—t)

ÿ

n

wt(n)e≠yn—tht(xn)

= argmin
(ht(x),—t)

(e—t ≠ e≠—t)
ÿ

n

wt(n)I[yn ”= ht(xn)]

+ e≠—t
ÿ

n

wt(n)

What term(s) must we optimize?

We need to minimize the entire objective function with respect to —t!

We can do this by taking derivative with respect to —t, setting to zero, and
solving for —t. After some calculation and using

q
n wt(n) = 1, we find:

—ú
t = 1

2 log 1 ≠ ‘t

‘t

which is precisely step 2 of Adaboost! (Exercise – verify the solution)



Assessed practical Derivation of AdaBoost

Updating the weights

Once we find the optimal weak learner we can update our classifier:

f(x) = ft≠1(x) + —ú
t hú

t (x)

We then need to compute the weights for the above classifier as:

wt+1(n) = e≠ynf(xn) = e≠yn[ft≠1(x)+—ú
t hú

t (xn)]

= wt(n)e≠yn—ú
t hú

t (xn) =
;

wt(n)e—ú
t if yn ”= hú

t (xn)
wt(n)e≠—ú

t if yn = hú
t (xn)

Intuition Misclassified data points will get their weights increased, while
correctly classified data points will get their weight decreased



Assessed practical Derivation of AdaBoost

Meta-Algorithm

Note that the AdaBoost algorithm itself never specifies how we would get
hú

t (x) as long as it minimizes the weighted classification error

‘t =
ÿ

n

wt(n)I[yn ”= hú
t (xn)]

In this aspect, the AdaBoost algorithm is a meta-algorithm and can be used
with any type of classifier



Assessed practical Derivation of AdaBoost

E.g., Decision Stumps

How do we choose the decision stump classifier given the weights at the
second round of the following distribution?

Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

Presort data by each feature in O(dN log N ) time
Evaluate N + 1 thresholds for each feature at each round in O(dN ) time
In total O(dN log N + dNT ) time – this efficiency is an attractive quality of
boosting!



Assessed practical Derivation of AdaBoost

Interpreting boosting as learning nonlinear basis

The degree of blackness represents the confidence in the red class. The size of
datapoints represents their weight. Decision boundary in yellow.
Left: After 1 iteration, Middle: After 3 iterations, Right: After 120 iterations.

Example from Murphy, p.560; generating script written by R.Stapenhurst



Assessed practical Derivation of AdaBoost

Example: Netflix

The Netflix Prize: improve the accuracy of predictions about how much
someone is going to love a movie based on their movie preferences.
http://www.netflixprize.com
Training data is a set of users and past ratings (1 to 5 stars).
Construct a classifier that predicts user rating for unrated movies.
Winning team (BellKor’s Pragmatic Chaos) employed boosting. They
received 1M$.



FIN



Syllabus I

Part I: Introduction to unsupervised learning
Dimensionality reduction

Principal component analysis, SVD, Biplots, Multidimensional scaling,
Isomap

Clustering
K-means
Hierarchical clustering



Syllabus II

Part II: Supervised learning
Empirical risk minimization
Regression

Linear
Non-linear basis functions
Gradient descent

Overfitting, cross-validation
Regularization
Bias/variance tradeoff
Classification

Discriminant analysis
Logistic regression
Naïve Bayes
K-nearest neighbors

Generative vs discriminative methods
Performance evaluation



Syllabus III

Part III: Useful algorithms for supervised learning
Decision trees
Bagging/Random forests
Neural networks
Deep learning
Boosting


	Boosting
	Assessed practical
	AdaBoost
	Derivation of AdaBoost

	

