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“Deep Learning est mort.  
Vive Differentiable Programming!” - Yann LeCun

Yeah, Differentiable Programming is little more than a 
rebranding of the modern collection of Deep Learning 
techniques, the same way Deep Learning was a rebranding 
of the modern incarnations of neural nets with more than 
two layers. 

The important point is that people are now building a new 
kind of software by assembling networks of parameterized 
functional blocks and by training them from examples using 
some form of gradient-based optimization….It’s really very 
much like a regular program, except it’s parameterized, 
automatically differentiated, and trainable/optimizable. 
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Artificial Intelligence
! AI problems are difficult and complex. 

! Impossible to manually programme explicit solutions. 

! Modern deep learning approach developed to tackle this difficulty 
and complexity. 

!We “programme” a solution space by specifying neural network 
architecture and objective function. 

! The system then searches in solution space by optimizing (learning) on 
large data sets, taking advantage of modern computing hardware.
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Deep Learning Infrastructure
! Computational Infrastructure critical to deep learning (and ML): 

! software instructures allow easy building of neural networks, automating 
away most low-level operations. 

! hardware allows fast training, and scalable productionisation. 
!Culture of sharing code via open source releases.  
! large datasets and difficult, shared, challenges pushing frontier forward.
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Learning Parameterised Functions

! Modern deep learning frameworks allow for construction and 
learning of parameterised functions. 

!Consists of basic building blocks composed into computation graphs. 
!Highly expressive and flexible. 
!Modular: reusable complex building blocks are themselves composed of 
simpler building blocks. 

! Computation graph structure expresses prior knowledge. 
! Learning using stochastic gradient descent (on multiple CPUs, 

GPUs, clusters) is automated and scalable.
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Neural Networks

ywteh

x

h

y

y = �(W2h+ b2)

h = �(W1x+ b1)



SB2b/SM4 - Deep Learning

Building Blocks
! Linear/fully-connected/dense 

! sigmoid 

! tanh 

! relu 

! softmax 

! Losses
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Building Blocks
! Convolution 

! max pooling
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Gradient Descent

! Iterative procedure: 

! Two questions:  
! scalability to large data sets? 

! how to compute derivatives?
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Stochastic Gradient Descent
! Estimate gradient of loss using “minibatches” of data: 

! Reduce computation cost from O(n) to O(|Bt|). 
!More data is always better, as long as you have the compute to handle it. 

! Stochastic gradients are unbiased estimates ⇒ convergence theory. 

! Stochasticity can help regularise and alleviate over-fitting 
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Automatic Differentiation
! Two major approaches: forward mode, and reverse mode AD. 

! Forward: O(#inputs*#nodes). Reverse: O(#outputs*#nodes).
ywteh
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Convolutional Networks (Convnets)

! Both filter banks and layers are 4D tensors (arrays of numbers).
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Hierarchy of Parts
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Convnet Implementation in Keras 
(x_train, y_train), (x_test, y_test) =

          cifar10.load_data()

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

y_train = keras.utils.to_categorical(y_train,

          num_classes)

y_test = keras.utils.to_categorical(y_test,

          num_classes)


model = Sequential()

model.add(Conv2D(32, (3, 3), padding=‘same’,

          input_shape=x_train.shape[1:]))

model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3)))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))


model.add(Conv2D(64, (3, 3), padding='same'))

model.add(Activation('relu'))

model.add(Conv2D(64, (3, 3)))


model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))


model.add(Flatten())

model.add(Dense(512))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes))

model.add(Activation('softmax'))


opt = keras.optimizers.rmsprop(lr=0.0001,

              decay=1e-6)

model.compile(loss='categorical_crossentropy',

              optimizer=opt,

              metrics=['accuracy'])

model.fit(x_train, y_train,

              batch_size=batch_size,

              epochs=epochs,

              validation_data=(x_test, y_test),

              shuffle=True)
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GoogLeNet Architecture
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Sequence Models
! Natural language processes 

! Genomics

ywteh
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Recurrent Neural Networks

ywteh



SB2b/SM4 - Deep Learning

Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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Long Short Term Memory (LSTM)

ywteh

http://colah.github.io/posts/2015-08-Understanding-LSTMs/  
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Machine Translation with seq2seq

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-
with-neural-networks 
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Attention
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Attention
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Attention
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Attention
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K1 V1

K2 V2

K3 V3

K4 V4

QQuery

Key-value memory store

Match quality: mi = QK⊤
i

Attention mask: (a1, …, an) = softmax(m1, …, mn)

Output:
n

∑
i=1

aiVi

Attention(Q, K, V ) = softmax (QK⊤/ d) V
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Attention
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She  sells  seashells  by  the  seashore
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“self-attention”

“self-attention”

“cross-attention”
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Attention
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https://papers.nips.cc/paper/7181-attention-is-all-you-need
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Language Modelling
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https://blog.openai.com/better-language-models/ 
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Image Caption Generation

ywteh

black, orange and white cat laying on some paper on a desk.

cat with mussed up fur sitting discontentedly on a messy desk.

a cat lazily sits in the middle of a cluttered desk.

a cat sitting on top of a pile of papers on a desk.

a dark multicolored cat laying on a table cluttered with various items.
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Show Attend and Tell

http://kelvinxu.github.io/projects/capgen.html 
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Show Attend and Tell
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More Resources
! Tutorials and courses: 

! http://www.cs.ucl.ac.uk/current_students/syllabus/compgi/
compgi22_advanced_deep_learning_and_reinforcement_learning/  

! https://www.coursera.org/learn/machine-learning 
! http://videolectures.net/deeplearning2015_salakhutdinov_deep_learning/ 
! https://www.youtube.com/watch?v=F1ka6a13S9I 

! Summer schools: MLSS, DLSS, RLSS 
! Conferences: NIPS, ICML, UAI, AISTATS 
! Journals: JMLR 
! ArXiv
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