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Algorithm

Model Complexity

When should a regression tree growing be stopped?
As for classification, can use pruning (early stopping or post-pruning)
In general, can also use a regularized objective

Remp(T ) + C ◊ size(T )

Early stopping: row the tree from scratch and stop once the criterion
objective starts to increase.
Pruning: first grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.
Pruning is preferred as the choice of tree is less sensitive to “wrong” choices
of split points and variables to split on in the first stages of tree fitting.
Use cross-validation to determine optimal C.



Algorithm

Possible decision tree pruning rules

Stop when the number of leaves is more than a threshold
Stop when the leaf’s error is less than a threshold
Stop when the number of instances in each leaf is less than a threshold
Stop when the p-value between two divided leafs is smaller than a certain
threshold (e.g. 0.05 or 0.01) based on chosen statistical tests.
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Example: Neurosurgery
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Example: Neurosurgery
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Example: Heart Transplant



Algorithm

Example: Heart Transplant



Algorithm

Example: Boston Housing Data

crim per capita crime rate by town
nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
dis weighted distances to five Boston employment centres
lstat percentage of lower status of the population
... (6 more features)

Predict median house value.



Algorithm

Example: Boston Housing Data
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Different possible splits (features and thresholds) result in different quality measures.



Algorithm

Example: Boston Housing Data
Overall, the best first split is on variable rm, average number of rooms per
dwelling.
Final tree contains predictions in leaf nodes.

|rm< 6.941

lstat>=14.4

crim>=6.992 dis>=1.385

rm< 6.543

rm< 7.437

crim>=7.393 nox>=0.6825

11.98 17.14

21.63 27.43
45.58

14.4 33.35 21.9 45.9
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Example: Pima Indians Diabetes Dataset
Goal: predict whether or not a patient has diabetes.
> library(rpart)
> library(MASS)
> data(Pima.tr)
> rp <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> rp
n= 200

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)
4) age< 28.5 74 4 No (0.94594595 0.05405405) *
5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) *
11) glu>=90 26 11 No (0.57692308 0.42307692)
22) bp>=68 19 6 No (0.68421053 0.31578947) *
23) bp< 68 7 2 Yes (0.28571429 0.71428571) *

3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)
6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222) *
13) glu>=166 8 2 Yes (0.25000000 0.75000000) *
7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286)
14) bmi< 28.65 11 3 No (0.72727273 0.27272727) *
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) *



Algorithm

Example: Pima Indians Diabetes Dataset

> plot(rp,margin=0.1); text(rp,use.n=T)

|glu< 123.5

age< 28.5

glu< 90

bp>=68

ped< 0.3095

glu< 166 bmi< 28.65

No 
70/4

No 
9/0

No 
13/6

Yes
2/5

No 
21/6

Yes
2/6 No 

8/3
Yes
7/38
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Two possible trees.

> rp1 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> plot(rp1);text(rp1)

> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control(cp=0.05))

> plot(rp2);text(rp2)1 1 0 CHAPTER 8 . TREE-BASED CLASSIFIERS

|
glu< 123.5

age< 28.5

glu< 90

bmi< 27.05

npreg< 6.5

bmi>=35.85

bmi< 32.85

ped< 0.3095

glu< 166

bp< 89.5 skin< 32

bmi< 28.65

age< 32 ped< 0.628

bp>=71

glu< 138

ped>=0.5495

No 

No 

No 

No 

No Yes

Yes

No Yes No Yes

No Yes

No 

No Yes

Yes

Yes

Figure 8 .4 : Unpruned decision tree for the Pima Indians data set

Diabetes and Digestive and Kidney Diseases. The subjects were women who were at least 2 1 years old,
of Pima Indian heritage and living near Phoenix, Arizona. They were tested for diabetes according to
World Health Organisation criteria. The variables measured were the number of pregnancies (npreg),
the plasma glucose concentration in an oral glucose tolerance test (glu), the diastolic blood pressure
in mm Hg (bp), the triceps skin fold thickness in mm (skin), the body mass index (bbi), the diabetes
pedigree function (ped), and the age (age).

8 .3 Pruning a tree

Growing the tree until no more decrease in impurity is possible often leads to an overfit to the training
data. We thus have to prune the tree. The most popular pruning approach is the one proposed by
Breiman et al. (1 9 8 4 a). The idea behind this approach is that too big trees yield an overfit. Thus
too big trees must be penalised. Denote with R(T ) a measure of fit for the tree; this can be the
misclassification rate on the training set or the entropy of the partitioning. Instead of minimising the
fit criterion R(T ) itself, we now minimise the penalised fitting criterion

R(T ) + α · size(T ),

where size(T ) is the number of leafs and α controls the amount of penalisation. If we choose α = 0,
there will be no pruning; if we choose α = +∞ all nodes but the root node are removed. Breiman
et al. (1 9 8 4 a) showed that there is a nested sequence of subtrees of the fitted tree such that each is
optimal for a range of α. So all we have to do is to pick one of the trees of this sequence.

If we have a validation set at hand, we can pick the subtree yielding the lowest error rate in the
validation set. Otherwise one generally uses cross-validation to pick the optimal subtree. Figure 8 .5
shows the error (relative to a tree with the root node only) for the different subtrees for the Pima

1 1 2 CHAPTER 8 . TREE-BASED CLASSIFIERS

|
glu< 123.5

ped< 0.3095

bmi< 28.65

No 

No 

No Yes

Figure 8 .6 : Pruned decision tree for the Pima Indians data set.



Bagging and Random Forests Bagging

Bagging



Bagging and Random Forests Bagging

Model Variability

|glu< 123.5

ped< 0.3095

glu< 166 bmi< 28.65

No 

No Yes
No Yes

Is the tree ‘stable’ if training data were slightly different?



Bagging and Random Forests Bagging

Bootstrap for Classification Trees
The bootstrap is a way to assess the variance of estimators.
Fit multiple trees, each on a bootstrapped sample. This is a data set
obtained by sampling with replacement n times from training set.

> n <- nrow(Pima.tr)

> bss <- sample(1:n, n , replace=TRUE)

> sort(bss)

[1] 2 4 4 5 6 7 9 10 11 12 12 12 12 13 13 15 15 20 ...

> tree_boot <- rpart(Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],

control=rpart.control(xval=10)) ## 10-fold CV

|glu< 123.5

age< 28.5
glu< 94.5

npreg< 5.5

glu< 156.5

ped< 0.421No 
No 

No Yes

No Yes

Yes

|glu< 123.5

ped< 0.348

glu< 164.5 bmi< 28.65

No 

No Yes
No Yes



Bagging and Random Forests Bagging

Bootstrap for Regression Trees
Regression for Boston housing data.
Predict median house prices based only on crime rate.
Use decision stump—the simplest tree with a single split at root.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●
●
● ●

●
●

● ●●●

●

●
●
●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●● ●●

● ●
●

●
● ●

● ●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●
●
●

●
●

●

●
●

●
●

●

●
●● ●

●●●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

−4 −2 0 2 4

10
20

30
40

50

LOG( CRIME )

M
ED

IA
N

 H
O

U
SE

 P
R

IC
E

|crime>=1.918

13.44 24.44



Bagging and Random Forests Bagging

Bootstrap for Regression Trees
We fit a predictor f̂(x) on the data {(xi, yi)}n

i=1.
Assess the variance of f̂(x) by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators

f̂ b(x), b = 1, . . . , B

Each tree f̂ b is fitted on the resampled data (xji , yji)n
i=1 where each ji is

chosen randomly from {1, . . . , n} with replacement.
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Bagging and Random Forests Bagging

Bagging

Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

1 For b = 1, . . . , B:
1 Draw indices (j1, . . . , jn) from the set {1, . . . , n} with replacement.
2 Fit the model, and form predictor f̂b(x) based on bootstrap sample

(xj1 , yj1 ), . . . , (xjn , yjn )

2 Form bagged estimator

f̂Bag(x) = 1
B

Bÿ

b=1
f̂ b(x)



Bagging and Random Forests Bagging

Bagging
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Bagging smooths out the drop in the estimate of median house prices.
Bagging reduces the variance of predictions, i.e. when taking
expectations over a random dataset D:

ED
#
(f̂(x) ≠ ED[f̂(x)])2] Ø ED

#
(f̂Bag(x) ≠ ED[f̂Bag(x)])2]



Bagging and Random Forests Bagging

Variance Reduction in Bagging

Suppose, in an ideal world, our estimators f̂ b are each based on different
independent datasets of size n from the true joint distribution of X, Y .
The aggregated estimator would then be

f̂ag(x) = 1
B

Bÿ

b=1
f̂ b(x) æ f̄(x) = ED[f̂(x)] as B æ Œ

where expectation is with respect to datasets of size n.
The squared-loss is:

ED[(Y ≠ f̂ag(X))2|X = x] =
= ED[(Y ≠ f̄(X))2|X = x] + ED[(f̄(X) ≠ f̂ag(X))2|X = x]
æ ED[(Y ≠ f̄(X))2|X = x] as B æ Œ.

Aggregation reduces the squared loss by eliminating variance of f̂(x).
In bagging, variance reduction still applies at the cost of a small increase
in bias.
Bagging is most useful for flexible estimators with high variance (and
low bias).



Bagging and Random Forests Bagging

Variance Reduction in Bagging

Deeper trees have higher complexity and variance.
Compare bagging trees of depth 1 and 3.
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Bagging and Random Forests Bagging

Out-of-bag Test Error Estimation

How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?
Answer 1: cross-validation.

● ● ● ● ● ● ● ● ●v=4

● ● ● ● ● ● ● ● ●v=3

● ● ● ● ● ● ● ● ●v=2

● ● ● ● ● ● ● ● ●v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

For each v = 1, . . . , V ,
fit f̂Bag on the training samples.
predict on validation set.

Compute the CV error by averaging the loss across all test observations.



Bagging and Random Forests Bagging

Out-of-bag Test Error Estimation

But to fit f̂Bag on the training set for each v = 1, . . . , V , we have to train
on B bootstrap samples!

● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ●● b=1

v=4

● ● ● ● ● ● ● ● ● ● ● ●●● ●● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=1

v=3

● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●●●● ●●● b=4
● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● b=3
● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● b=2
● ● ● ● ● ● ● ● ● ● ● ●●●● ●● ● b=1

v=2

● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● b=5
● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● b=4
● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● b=3
● ● ● ● ● ● ● ● ● ● ● ●●● ●●● b=2
● ● ● ● ● ● ● ● ● ● ● ●● ●●● ●● b=1

v=1

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

Answer 2: Out-of-bag test error estimation.



Bagging and Random Forests Bagging

Out-of-bag Test Error Estimation
Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂oob(x1) = 1
4

ÿ

bœ{3,4,8,10}

f̂ b(x1)



Bagging and Random Forests Bagging

Out-of-bag Test Error Estimation
Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

● ● ●●●●● b=10

● ●●● ●● ● b=9

●●● ● ●● ● b=8

●● ● ●● b=7

●● ●● ●●● ● b=6

● ●●●● ●●● ● b=5

●●● ● ●● ●● ● b=4

●● ●● ●●● ● b=3

● ●● ●● ● ● ● b=2

● ● ●● ●● ●● b=1
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12

f̂oob(x2) = 1
3

ÿ

bœ{2,8,10}

f̂ b(x2)



Bagging and Random Forests Bagging

Out-of-bag Test Error Estimation

For each i = 1, . . . , n, the out-of-bag sample is:

B̃i = {b : xi is not in training set} ™ {1, . . . , B}.

Construct the out-of-bag estimate at xi:

f̂oob(xi) = 1
|B̃i|

ÿ

bœB̃i

f̂ b(ii)

Out-of-bag risk:

Roob = 1
n

nÿ

i=1
L(yi, f̂oob(xi))



Bagging and Random Forests Bagging

Out-of-bag Test Error Estimation

We need |B̃i| to be reasonably large for all i = 1, . . . , n.
The probability fioob of an observation NOT being included in a bootstrap
sample (j1, . . . , jn) (and hence being ‘out-of-bag’) is:

fioob =
nŸ

i=1

3
1 ≠ 1

n

4
næŒ≠æ 1

e
¥ 0.367.

Hence E[|B̃i|] ¥ 0.367B

In practice, number of bootstrap samples B is typically between 200 and
1000, meaning that the number |B̃i| of out-of-bag samples will be
approximately in the range 70 ≠ 350.
The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.



Bagging and Random Forests Bagging

Example: Boston Housing Dataset

Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.
Use the entire dataset with p = 13 predictor variables.

n <- nrow(BostonHousing) ## n samples

X <- BostonHousing[,-14]

Y <- BostonHousing[,14]

B <- 100

maxdepth <- 3

prediction_oob <- rep(0,length(Y)) ## vector with oob predictions

numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees

for (b in 1:B) { ## loop over bootstrap samples

subsample <- sample(1:n,n,replace=TRUE) ## "in-bag" samples

outofbag <- (1:n)[-subsample] ## "out-of-bag" samples

## fit tree on "in-bag" samples

treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control(maxdepth=maxdepth,minsplit=2))

## predict on oob-samples

prediction_oob[outofbag] <- prediction_oob[outofbag] +

predict(treeboot, newdata=X[outofbag,])

numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1

}

## final oob-prediction is average across all "out-of-bag" trees

prediction_oob <- prediction_oob / numbertrees_oob



Bagging and Random Forests Bagging

Example: Boston Housing Dataset

plot(prediction_oob, Y, xlab="PREDICTED", ylab="ACTUAL")

For depth d = 1.
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For depth d = 10.
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Bagging and Random Forests Bagging

Example: Boston Housing Dataset

Out-of-bag error as a function of tree depth d:
tree depth d 1 2 3 4 5 10 30
single tree f̂ 60.7 44.8 32.8 31.2 27.7 26.5 27.3

bagged trees f̂Bag 43.4 27.0 22.8 21.5 20.7 20.1 20.1
Without bagging, the optimal tree depth seems to be d = 10.
With bagging, we could also take the depth up to d = 30.

Summary:
Bagging reduces variance and prevents overfitting
Often improves accuracy in practice.
Bagged trees cannot be displayed as nicely as single trees and some of
the interpretability of trees is lost.
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Random Forests



Bagging and Random Forests Random Forests

Random Forests and Extremely Randomized Trees

Random forests are similar to bagged decision trees with a few key
differences:

For each split point, the search is not over all p variables but just over mtry
randomly chosen ones (where e.g. mtry = Âp/3Ê)
No pruning necessary. Trees can be grown until each node contains just
very few observations (1 or 5).
Random forests tend to produce better predictions than bagging.
Results often not sensitive to the only tuning parameter mtry.
Implemented in randomForest library.

Even more random methods, e.g. extremely randomized trees:
For each split point, sample mtry variables each with a random value to

split on, and pick the best one.
Often works even when mtry equals 1!

Often produce state-of-the-art results, and top performing methods in
machine learning competitions.

Breiman (2001), Geurts et al (2006)

http://link.springer.com/article/10.1023/A:1010933404324
http://link.springer.com/article/10.1007/s10994-006-6226-1
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Random Forests
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Table 1
Data set descriptions

Training Test
Data set Sample size Sample size Variables Classes

Cancer 699 — 9 2
Ionosphere 351 — 34 2
Diabetes 768 — 8 2
Glass 214 — 9 6
Soybean 683 — 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

that in many states, the trials were anything but
speedy. It funded a study of the causes of the delay.
I visited many states and decided to do the anal-
ysis in Colorado, which had an excellent computer-
ized court data system. A wealth of information was
extracted and processed.

The dependent variable for each criminal case
was the time from arraignment to the time of sen-
tencing. All of the other information in the trial his-
tory were the predictor variables. A large decision
tree was grown, and I showed it on an overhead and
explained it to the assembled Colorado judges. One
of the splits was on District N which had a larger
delay time than the other districts. I refrained from
commenting on this. But as I walked out I heard one
judge say to another, “I knew those guys in District
N were dragging their feet.”

While trees rate an A+ on interpretability, they
are good, but not great, predictors. Give them, say,
a B on prediction.

9.1 Growing Forests for Prediction

Instead of a single tree predictor, grow a forest of
trees on the same data—say 50 or 100. If we are
classifying, put the new x down each tree in the for-
est and get a vote for the predicted class. Let the for-
est prediction be the class that gets the most votes.
There has been a lot of work in the last five years on
ways to grow the forest. All of the well-known meth-
ods grow the forest by perturbing the training set,
growing a tree on the perturbed training set, per-
turbing the training set again, growing another tree,
etc. Some familiar methods are bagging (Breiman,
1996b), boosting (Freund and Schapire, 1996), arc-
ing (Breiman, 1998), and additive logistic regression
(Friedman, Hastie and Tibshirani, 1998).

My preferred method to date is random forests. In
this approach successive decision trees are grown by
introducing a random element into their construc-
tion. For example, suppose there are 20 predictor

variables. At each node choose several of the 20 at
random to use to split the node. Or use a random
combination of a random selection of a few vari-
ables. This idea appears in Ho (1998), in Amit and
Geman (1997) and is developed in Breiman (1999).

9.2 Forests Compared to Trees

We compare the performance of single trees
(CART) to random forests on a number of small
and large data sets, mostly from the UCI repository
(ftp.ics.uci.edu/pub/MachineLearningDatabases). A
summary of the data sets is given in Table 1.

Table 2 compares the test set error of a single tree
to that of the forest. For the five smaller data sets
above the line, the test set error was estimated by
leaving out a random 10% of the data, then run-
ning CART and the forest on the other 90%. The
left-out 10% was run down the tree and the forest
and the error on this 10% computed for both. This
was repeated 100 times and the errors averaged.
The larger data sets below the line came with a
separate test set. People who have been in the clas-
sification field for a while find these increases in
accuracy startling. Some errors are halved. Others
are reduced by one-third. In regression, where the

Table 2
Test set misclassification error (%)

Data set Forest Single tree

Breast cancer 2.9 5.9
Ionosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6

Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle ×103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

From Breiman, Statistical Modelling: the two cultures, 2001.

http://projecteuclid.org/euclid.ss/1009213726
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Random Forests

Comparison of 179 classifiers on 121 datasets. Random forests come top
with SVMs close behind.

From Delgado et al, 2014

http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
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Looking at the Boston Housing data again (and at the help page for
randomForest first).

library(randomForest)

library(MASS)

data(Boston)

y <- Boston[,14]

x <- Boston[,1:13]

?randomForest
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> randomForest package:randomForest R Documentation

Classification and Regression with Random Forest

Description:

’randomForest’ implements Breiman’s random forest algorithm (based

on Breiman and Cutler’s original Fortran code) for classification

and regression. It can also be used in unsupervised mode for

assessing proximities among data points.

Usage:

## S3 method for class ’formula’:

randomForest(formula, data=NULL, ..., subset, na.action=na.fail)

## Default S3 method:

randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))

max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),

replace=TRUE, classwt=NULL, cutoff, strata,

sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),

nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,

importance=FALSE, localImp=FALSE, nPerm=1,

proximity=FALSE, oob.prox=proximity,

norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,

keep.inbag=FALSE, ...)
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Boston Housing data, again.
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> rf <- randomForest(x,y)

> print(rf)

>

Call:

randomForest(x = x, y = y)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.26161

% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot( predict(rf), y)

> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot( predict(rf,newdata=x), y)
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Out-of-bag error.
> plot( predict(rf), y)

> abline(c(0,1),col=2)
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y

Training error.

> plot( predict(rf,newdata=x), y)

> abline(c(0,1),col=2)
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Try mtry 2

> (rf <- randomForest(x,y,mtry=2))

Call:

randomForest(x = x, y = y, mtry = 2)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 12.17176

% Var explained: 85.58

Try mtry 4

> (rf <- randomForest(x,y,mtry=4))

Call:

randomForest(x = x, y = y, mtry = 4)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 4

Mean of squared residuals: 10.01574

% Var explained: 88.14
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And mtry 8 and 10.

> (rf <- randomForest(x,y,mtry=8))

Call:

randomForest(x = x, y = y, mtry = 8)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 8

Mean of squared residuals: 9.552806

% Var explained: 88.68

> > (rf <- randomForest(x,y,mtry=10))

Call:

randomForest(x = x, y = y, mtry = 10)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 10

Mean of squared residuals: 9.774435

% Var explained: 88.42

mtry is the only real tuning parameter and typically performance not sensitive
to its choice (can use tuneRF to select it automatically).
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Variable “Importance”

Tree ensembles have better performance, but decision trees are more
interpretable.
How to interpret a forest of trees ?

Idea: denote by ê the out-of bag estimate of the loss when using the original
data samples. For each variable k œ {1, . . . , p},

permute randomly the k-th predictor variable to generate a new set of
samples (X̃1, Y1), . . . , (X̃n, Yn), i.e., X̃(k)

i = X(k)
·(i), for a permutation · .

compute the out-of-bag estimate êk of the prediction error with these new
samples.

A measure of importance of variable k is then êk ≠ ê, the increase in error rate
due to a random permutation of the k-th variable.
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Example for Boston Housing data.

rf <- randomForest(x,y,importance=TRUE)

varImpPlot(rf)
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Ensemble Methods

Bagging and random forests are examples of ensemble methods, where
predictions are based on an ensemble of many individual predictors.
Many other ensemble learning methods: boosting, stacking, mixture of
experts, Bayesian model combination, Bayesian model averaging etc.
Often gives significant boost to predictive performance.
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Microsoft Kinect Pose Recognition

Kinect algorithm CVPR Paper
Video

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf
https://www.youtube.com/watch?v=lntbRsi8lU8
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