Statistical Machine Learning
Hilary Term 2019

Pier Francesco Palamara
Department of Statistics
University of Oxford

Slide credits and other course material can be found at:

http://www.stats.ox.ac.uk/~palamara/SML19.html

February 26, 2019

http://www.stats.ox.ac.uk/~palamara/SML19.html

Model Complexity

@ When should a regression tree growing be stopped?
@ As for classification, can use pruning (early stopping or post-pruning)
@ In general, can also use a regularized objective

R°™(T) 4 C x size(T)

o Early stopping: row the tree from scratch and stop once the criterion
objective starts to increase.

@ Pruning: first grow the full tree and prune nodes (starting at leaves), until the
objective starts to increase.

e Pruning is preferred as the choice of tree is less sensitive to “wrong” choices
of split points and variables to split on in the first stages of tree fitting.

o Use cross-validation to determine optimal C.

Possible decision tree pruning rules

@ Stop when the number of leaves is more than a threshold
@ Stop when the leaf’s error is less than a threshold
@ Stop when the number of instances in each leaf is less than a threshold

@ Stop when the p-value between two divided leafs is smaller than a certain
threshold (e.g. 0.05 or 0.01) based on chosen statistical tests.

Algorithm

Example: Neurosurgery

Predictive model Prediction for the
(Decision Tree) success probabilty of
Neurosurgery

Recommend
Neurosurgery only for
certain patient groups

Patient information

Type | Explanation Note
Patient | 1,449 patients with neurosurgery 2 year follow-up
Feature | 91 Features (61 Continuous / 30 Binary)
Label MCID 1: 938 Patients (64.7%)
MCID 0: 511 Patients (35.3%)

Algorithm

Example: Neurosurgery

Success
64.7%
SRS Image - T
Jr/,Score <345 T -
Success Success
77.8% 40.0%
SRS Image SRS Mental
S/gre <29 ~__ Sgre <41 _
Success Success Success Success
91.3% 68.9% 27.9% 47.9%
SRS Mental Trunk Shift
Score £ 4.1 <155
Success Success Success Success
61.7% 71.5% 34.0% 55.3%
Weight Sacral Slope
<765 <495
Success Success Success Success
65.0% 24.0% 26.2% 63.6%

Algorithm

Example: Heart Transplant

Patients / Donors
Information

Predictive model Prediction for the
(Decision Tree) success of heart
transplant

Y

Optimally match
patients and donors
to minimize mortality

Alive: 39,730 Patients (70.05%)

Type | Explanation Note

Patient | 56,716 patients (heart transplant patients) | follow-up until they died
Feature | 141 Features (84 Continuous / 57 Binary) | From 1986 to 2015
Label Dead: 16,986 Patients (29.95%)

Example: Heart Transplant

Success
70.1%
DonorAge< — = ——
o 28
Success Success
81.2% 55.3%
No Ventilator - ~ No Ventilator —
Assist ~_ Assist T~
Success Success Success Success
88.5% 54.2% 67.1% 21.3%
. Previous No Donor HEP No Dialysis in
No Diabetes ™ Transplant < 0 C Antigen Listing
Success Success Success Success Success Success Success Success
91.2% 69.1% 71.2% 32.1% 57.9% 71.2% 41.5% 13.9%
Creatinine < Previous
1.36 Transplant < 0
Success Success Success Success
77.1% 69.3% 69.1% 41.1%

Example: Boston Housing Data

crim per capita crime rate by town

nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling

dis weighted distances to five Boston employment centres

lstat percentage of lower status of the population
(6 more features)

@ Predict median house value.

NOX
8.32

$30Itd ISNOH NVIGIW

Data

00 amamo

ing

Algorithm

NOX
8.84

Boston Hous

S30Itd ISNOH NVIGIW $30Itd 3SNOH NVIGIW

Example

LOG(CRIME)

LOG(CRIME)

Different possible splits (features and thresholds) result in different quality measures.

Example: Boston Housing Data

@ Overall, the best first split is on variable rm, average number of rooms per
dwelling.
@ Final tree contains predictions in leaf nodes.

m< 6.941

Istat>14.4 rm< 7.437

crim>x7.393 nox>=).682¢

144 3335 219 459
crim>%6.992 dis>=1.385

11.98 17.14 rm<§.543
45.58
21.63 27.43

Example: Pima Indians Diabetes Dataset

Goal: predict whether or not a patient has diabetes.

> library (rpart)
> library (MASS)
> data(Pima.tr)
> rp <- rpart (Pima.tr[,8] ~ ., data=Pima.tr[,-8]
>

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 200 68 No (0.66000000 0.34000000)
2) glu< 123.5 109 15 No (0.86238532 0.13761468)

4) age< 28.5 74 4 No (0.94594595 0.05405405) =«

5) age>=28.5 35 11 No (0.68571429 0.31428571)
10) glu< 90 9 0 No (1.00000000 0.00000000) =
11) glu>=90 26 11 No (0.57692308 0.42307692)

22) bp>=68 19 6 No (0.68421053 0.31578947) =
23) bp< 68 7 2 Yes (0.28571429 0.71428571) =
3) glu>=123.5 91 38 Yes (0.41758242 0.58241758)

6) ped< 0.3095 35 12 No (0.65714286 0.34285714)
12) glu< 166 27 6 No (0.77777778 0.22222222)
13) glu>=166 8 2 Yes (0.25000000 0.75000000)

7) ped>=0.3095 56 15 Yes (0.26785714 0.73214286
14) bmi< 28.65 11 3 No (0.72727273 0.27272727
15) bmi>=28.65 45 7 Yes (0.15555556 0.84444444) «

*
*
)
)

*

Example: Pima Indians Diabetes Dataset

> plot (rp,margin=0.1); text (rp,use.n=T)
glu< 123.5

age< 28.5 ped< (0.3095

70/4

13/6 2/5
glu<g 166 bmi< [28.65
NL YL
21/6 2/6 N Yes

8/3 7/38

Algorithm

Two possible trees.

> rpl <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8])
> plot (rpl);text (rpl)

> rp2 <- rpart(Pima.tr[,8] ~ ., data=Pima.tr[,-8],
control=rpart.control (cp=0.05))
> plot (rp2) ;text (rp2)

glu< 1235

3095

glud168 bmi<ps 65

No Yes bp<pp95 skink a2
agef 32
No Yes No Yes

Bagging and Random Forests

Bagging

Baggng
Model Variability

glu< 123.5

ped< (.3095

gluq 166 bmi< 28.65

@ Is the tree ‘stable’ if training data were slightly different?

Becaing
Bootstrap for Classification Trees

@ The bootstrap is a way to assess the variance of estimators.
@ Fit multiple trees, each on a bootstrapped sample. This is a data set
obtained by sampling with replacement » times from training set.
> n <- nrow(Pima.tr)
> bss <- sample(l:n, n , replace=TRUE)
> sort (bss)
[1] 24456 79 10 11 12 12 12 12 13 13 15 15 20

> tree_boot <- rpart (Pima.tr[bss,8] ~ ., data=Pima.tr[bss,-8],
control=rpart.control (xval=10)) ## 10-fold CV

glu< 123.5 lu< 123.5

ped<|0.348

No

lu< 164.5 bmi< P8.65

No Yes

Becaing
Bootstrap for Regression Trees

@ Regression for Boston housing data.
@ Predict median house prices based only on crime rate.
@ Use decision stump—the simplest tree with a single split at root.

50
I
2]
°
o
°g
o
8
B

40

MEDIAN HOUSE PRICE

20
L

10
L

LOG(CRIME)

Becaing
Bootstrap for Regression Trees

@ We fit a predictor f(z) on the data {(x;,:)}7,.
@ Assess the variance of f () by taking B = 20 bootstrap samples of the
original data, and obtaining bootstrap estimators
f’e), b=1,....B

@ Each tree /" is fitted on the resampled data (z;,,y;,)?, where each j; is
chosen randomly from {1, ..., n} with replacement.

50

30
I

MEDIAN HOUSE PRICE
20
I

MEDIAN HOUSE PRICE

10

LOG(CRIME) LOG(CRIME)

@ Bagging (Bootstrap Aggregation): average across all B trees fitted on
different bootstrap samples.

@ Forv=1,...,B:
@ Draw indices (j1, ..., jn) from the set {1,..., n} with replacement.
@ Fit the model, and form predictor f*(z) based on bootstrap sample

(mjl s yj1)7 B (mj7L) yjn)

@ Form bagged estimator

MEDIAN HOUSE PRICE
20
I

MEDIAN HOUSE PRICE
20
L

LOG(CRIME) LOG(CRIME)

@ Bagging smooths out the drop in the estimate of median house prices.
@ Bagging reduces the variance of predictions, i.e. when taking
expectations over a random dataset D:

Ep[(f(z) —Ep[f(@)))] > Ep[(f5ag(2) —Ep[fpae(2)])’]

Becaing
Variance Reduction in Bagging

@ Suppose, in an ideal world, our estimators f* are each based on different
independent datasets of size n from the true joint distribution of X, Y.
@ The aggregated estimator would then be

faq BZf [f()] as B — o

where expectation is with respect to datasets of size n.
@ The squared-loss is:

Ep((Y — fag(X))*|1X = 2] =
=Ep[(Y — f(X))*|X = a] + Ep[(f(X) = fag(X))*| X = 2]
— Ep[(Y — f(X))?|X =2] as B — occ.
Aggregation reduces the squared loss by eliminating variance of f(:c).
@ In bagging, variance reduction still applies at the cost of a small increase
in bias.
@ Bagging is most useful for flexible estimators with high variance (and
low bias).

Becaing
Variance Reduction in Bagging

@ Deeper trees have higher complexity and variance.
@ Compare bagging trees of depth 1 and 3.

log(x$crim) log(xScrim)

Baggng
Out-of-bag Test Error Estimation

@ How well does bagging to? Can we estimate generalization performance,
and tune hyperparameters?

@ Answer 1: cross-validation.

i=1 =2 =38 i=4 =5 =6 =7 =8 =9 =10 i=11 i=12

"®®®®®®®®®O0O0O0)

“®®®®®®0000ee

~®®®000ee®®e®

Cooleeee®e®e®®® ®

v=4

@ Foreachv=1,...,V,

o fit fza, On the training samples.
e predict on validation set.

@ Compute the CV error by averaging the loss across all test observations.

12

11

10 i

., V, we have to train

|Bagging

Out-of-bag Test Error Estimation

Bagging and Random Forests

@ But to fit fz,, on the training set for each v = 1,..

on B bootstrap samples!

ErN R R Te}
L T T 1
00000

O0000

00000

OO000O0

®@@®00

C@@®@®0

®®000

[OXeX@XOXO)]

[OXOXOXOXO]

®@0®00

[OXeX@XOXO)

[@XOROXOXO]

[OXOROXOXO]

v=

— QO

L0000

@000®

@@@®@®O0

®@®00®

00000

00000

00000

O@®@000

@O0@®@®0

@O0e®®®

@@0®0

OCee®®

cCee®®

v=2

— Q™S

00000

Coee®®

@000®@

C®@®®0

[OJOJOXOXO]

@@@O0O0

@@®®0

Q0000

00000

Q0000

@e0®®

[OJ@JOXOX@]

Coe@@O

v=3

— O S0

00000

CQCee®

@0®@0®

@®@®000

@@@®@®0

[OXSXOXOXO)]

@®@@0®0

@@0®0

[OXOXOXOXO]

@®@@00®

[eXeXeXeXe)

00000

00000

v=4

@ Answer 2: Out-of-bag test error estimation.

Bagging and Random Forests ‘Bagging

Out-of-bag Test Error Estimation

@ Idea: test on the “unused” data points in each bootstrap iteration to
estimate the test error.

.
i
4N
e
i
0
i
i

b=1

b=2

b=3

W

b=4

b=5

b=6

b=7

b=8

o
T}
©

®|®|O|/0|0|0|0|®|Cs

O|®0®®®0O 0 ® e <
O®0®®e®®®O0
Oe®®®e®®®
O 0|®0®®®®0

s~ O0@®0®®®®®
®©0|®0®®0®®
©® 0O0®0®®0O

. ©@0)®0|®®0®
® 0@ 0@ ®®®®CL
©|®® O|00®0 /@ ek

~
[=al
—
&
=
-

Vo
©®0®0®®®0
7

foob (331

N~—
I

~

be{3,4,8,10}

Bagging and Random Forests ‘Bagging

Out-of-bag Test Error Estimation

@ Idea: test on the “unused” data points in each bootstrap iteration to

estimate the test error.

\/

1

B8BTS,

— 0 0®0®®0®0®® ® >

® @

i(:Q

10

C@®e®e®e®®®OO®®O0O O bs
C@®®0®©®OO®0®®® O b=+
©®@®®0®®®O®®®O O:bs
©®®®0®®®® OO0 ®O O e®b=s
©®®® OO0 00 ®®O O O b7
— 00 ®©®®®®O0 00 ®® ® bs
®©®@®@ O000@®®® 0O ® ® b=
— 000000 ®®®®® @

>)
be{2,8,10}

fOOb(J:Q) _ é

Baggng
Out-of-bag Test Error Estimation

@ Foreachi=1,...,n, the out-of-bag sample is:

B; = {b: x; is not in training set} C {1, ...

@ Construct the out-of-bag estimate at z;:

foP(ai) = " (i7)

9 =
N
~

| z| beB;

@ Out-of-bag risk:

1 & .
Roob _ E ZL(yiafOOb(-Ti))
=1

Baggng
Out-of-bag Test Error Estimation

@ We need | B;| to be reasonably large foralli = 1,...,n.
@ The probability 7°° of an observation NOT being included in a bootstrap
sample (41, ..., Jj.) (@and hence being ‘out-of-bag’) is:

n 1 1
oob n—qo
:” 1—— — - = 0.367.
" i=1 < n) ¢
@ Hence E[| B;|] ~ 0.367B

@ In practice, number of bootstrap samples B is typically between 200 and
1000, meaning that the number | B;| of out-of-bag samples will be
approximately in the range 70 — 350.

@ The obtained test error estimate is asymptotically unbiased for large
number B of bootstrap samples and large sample size n.

Becaing
Example: Boston Housing Dataset

@ Apply out of bag test error estimation to select optimal tree depth and
assess performance of bagged trees for Boston Housing data.

@ Use the entire dataset with p = 13 predictor variables.

n <- nrow (BostonHousing) ## n samples

X <- BostonHousing[,-14]

Y <- BostonHousing[, 14]

B <- 100

maxdepth <- 3

prediction_oob <- rep(0,length(Y)) ## vector with oob predictions

numbertrees_oob <- rep(0,length(Y)) ## number pf oob trees

for (b in 1:B) { ## loop over bootstrap samples
subsample <- sample(l:n,n, replace=TRUE) ## "in-bag" samples
outofbag <- (1l:n) [-subsample] ## "out-of-bag" samples

fit tree on "in-bag" samples

treeboot <- rpart(Y ~ ., data=X, subset=subsample,

control=rpart.control (maxdepth=maxdepth,minsplit=2))
predict on oob-samples
prediction_oob[outofbag] <- prediction_oob[outofbag] +
predict (treeboot, newdata=X[outofbag,])
numbertrees_oob[outofbag] <- numbertrees_oob[outofbag] + 1
}
final oob-prediction is average across all "out-of-bag" trees
prediction_oob <- prediction_oob / numbertrees_oob

Becaing
Example: Boston Housing Dataset

plot (prediction_oob, Y, x1ab="PREDICTED", ylab="ACTUAL")

For depth d = 1. For depth d = 10.

50
I
o
o
o

oo

30 40
I
o
0000 O®WDOO O

ACTUAL
ACTUAL

o
o

20 25 30 10 20 30 40

PREDICTED PREDICTED

Becaing
Example: Boston Housing Dataset

@ Out-of-bag error as a function of tree depth d:
treedepthd | 1 2 3 4 5 10 30

single tree f 60.7 448 328 312 277 265 27.3
baggedtreesfgag 434 27.0 228 215 20.7 20.1 201

@ Without bagging, the optimal tree depth seems to be d = 10.
@ With bagging, we could also take the depth up to d = 30.

Summary:
@ Bagging reduces variance and prevents overfitting
@ Often improves accuracy in practice.

@ Bagged trees cannot be displayed as nicely as single trees and some of
the interpretability of trees is lost.

EECRICEUCIEUC I ZI S Ml |Random Forests:

Random Forests

EECRICEUCIEUC I ZI S Ml |Random Forests:

Random Forests and Extremely Randomized Trees

@ Random forests are similar to bagged decision trees with a few key
differences:

o For each split point, the search is not over all p variables but just over mtry
randomly chosen ones (where e.g. miry = |p/3])

@ No pruning necessary. Trees can be grown until each node contains just
very few observations (1 or 5).

e Random forests tend to produce better predictions than bagging.

e Results often not sensitive to the only tuning parameter miry.

o Implemented in randomForest library.

@ Even more random methods, e.g. extremely randomized trees:
e For each split point, sample mtry variables each with a random value to
split on, and pick the best one.
o Often works even when miry equals 1!
@ Often produce state-of-the-art results, and top performing methods in
machine learning competitions.

Breiman (2001),|Geurts et al (2006)

http://link.springer.com/article/10.1023/A:1010933404324
http://link.springer.com/article/10.1007/s10994-006-6226-1

EECRICEUCIEUC I ZI S Ml |Random Forests:

Random Forests

TABLE 2
Test set misclassification error (%)

Data set Forest Single tree
Breast cancer 2.9 5.9
Tonosphere 5.5 11.2
Diabetes 24.2 25.3
Glass 22.0 30.4
Soybean 5.7 8.6
Letters 3.4 12.4
Satellite 8.6 14.8
Shuttle x103 7.0 62.0
DNA 3.9 6.2
Digit 6.2 17.1

From\Breiman, Statistical Modelling: the two cultures, 2001.

http://projecteuclid.org/euclid.ss/1009213726

EECRICEUCIEUC I ZI S Ml |Random Forests:

Random Forests

Comparison of 179 classifiers on 121 datasets. Random forests come top
with SVMs close behind.

| Rank ‘ Acc. ‘ K | Classifier
32.9 | 82.0 | 63.5 parRF_t (RF)
33.1 82.3 | 63.6 rf_t (RF)
36.8 81.8 | 62.2 svim_C (SVM)
38.0 81.2 | 60.1 svmPoly_t (SVM)
39.4 | 819 | 625 rforest_ R (RF)
39.6 82.0 | 62.0 elm kernel_.m (NNET)
40.3 | 814 | 61.1 svmRadialCost_t (SVM)
42.5 81.0 | 60.0 svmRadial t (SVM)
42.9 80.6 | 61.0 C5.0_t (BST)
44.1 | 794 | 60.5 avNNet_t (NNET)

From|Delgado et al, 2014

http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf

EECRICEUCIEUC I ZI S Ml |Random Forests:

Looking at the Boston Housing data again (and at the help page for
randomForest first).

library (randomForest)

library (MASS)

data (Boston)

y <- Boston][,14]
x <— Boston[,1:13]

?randomForest

EECRICEUCIEUC I ZI S Ml |Random Forests:

> randomForest package:randomForest R Documentation
Classification and Regression with Random Forest

Description:
"randomForest’ implements Breiman’s random forest algorithm (based
on Breiman and Cutler’s original Fortran code) for classification
and regression. It can also be used in unsupervised mode for
assessing proximities among data points.

Usage:
S3 method for class ’formula’:
randomForest (formula, data=NULL, ..., subset, na.action=na.fail)

Default S3 method:
randomForest (x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))

max (floor (ncol (x)/3), 1) else floor (sgrt (ncol (x))),
replace=TRUE, classwt=NULL, cutoff, strata,

sampsize = if (replace) nrow(x) else ceiling(.632xnrow (x)
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,

importance=FALSE, localImp=FALSE, nPerm=1,
proximity=FALSE, oob.prox=proximity,

norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null (y) && is.null (xtest), corr.bias=FALS
keep.inbag=FALSE, ...)

EECRICEUCIEUC I ZI S Ml |Random Forests:

Boston Housing data, again.

200 700

mtotiapototintms:

i IIEY) W A 4 NP S0 WA N WIFA
b [11) il) B T L] F B
1000000000000
A PNTEEE
B P B [V) [] o o B]
) AR AR Y RN A ikl alli S
Ll A [) L e (B
N 9P Pt e o o e
U o) L b (] il B o [sl []
Pl Fil] B g - E .
O DEDAON I - EE
) ol i o 0 ol] 1 il B [~ R
LI bl TR SRR Ld by

EECRICEUCIEUC I ZI S Ml |Random Forests:

> rf <- randomForest (x,Vy)
> print (rf)
>
Call:
randomForest (x = x, v = V)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.26161
% Var explained: 87.84

Can plot the predicted values (out-of-bag estimation) vs. true values by

> plot (predict (rf), vy)
> abline(c(0,1),col=2)

Same if treating the training data as new data

> plot (predict (rf,newdata=x), V)

EECRICEUCIEUC I ZI S Ml |Random Forests:

Out-of-bag error. Training error.

> plot (predict(rf), vy)

> abline (c(0,1),col=2) > plot (predict (rf,newdata=x), vy)

> abline(c(0,1),col=2)

T T T T T
predict(rf) 10 20 30 40 50

predict(rf, newdata = x)

EECRICEUCIEUC I ZI S Ml |Random Forests:

Try mtry 2

> (rf <- randomForest (x,y,mtry=2))
Call:

randomForest (x = x, y = vy, mtry = 2)

Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2

Mean of squared residuals: 12.17176
% Var explained: 85.58

Try mtry 4

> (rf <- randomForest (x,y,mtry=4))
Call:
randomForest (x = x, y =y, mtry = 4)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 10.01574

o

% Var explained: 88.14

EECRICEUCIEUC I ZI S Ml |Random Forests:

And mtry 8 and 10.

> (rf <- randomForest (x,y,mtry=8))
Call:
randomForest (x = x, y =y, mtry = 8)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 8

Mean of squared residuals: 9.552806
% Var explained: 88.68

> > (rf <- randomForest (x,y,mtry=10)
Call:
randomForest (x = x, y = vy, mtry = 10)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10

Mean of squared residuals: 9.774435
% Var explained: 88.42

mtry is the only real tuning parameter and typically performance not sensitive
to its choice (can use tuneRF to select it automatically).

EECRICEUCIEUC I ZI S Ml |Random Forests:

Variable “Importance”

@ Tree ensembles have better performance, but decision trees are more
interpretable.

@ How to interpret a forest of trees ?

Idea: denote by é the out-of bag estimate of the loss when using the original
data samples. For each variable k € {1, ..., p},
@ permute randomly the k-th predictor variable to generate a new set of
samples (X1, Y1), ..., (X, Y,), i.e, X = Xf(:)), for a permutation 7.
@ compute the out-of-bag estimate ¢, of the prediction error with these new
samples.
A measure of importance of variable & is then é; — é, the increase in error rate
due to a random permutation of the k-th variable.

EECRICEUCIEUC I ZI S Ml |Random Forests:

Example for Boston Housing data.

rf <- randomForest (x,y, importance=TRUE)

varImpPlot (rf)

Istat
dis
nox
crim
ptratio
age
tax
indus
black
rad
chas

zn

T T T T
20 25 30 35

%IncMSE

EECRICEUCIEUC I ZI S Ml |Random Forests:

Ensemble Methods

@ Bagging and random forests are examples of ensemble methods, where
predictions are based on an ensemble of many individual predictors.

@ Many other ensemble learning methods: boosting, stacking, mixture of
experts, Bayesian model combination, Bayesian model averaging etc.

@ Often gives significant boost to predictive performance.

EECRICEUCIEUC I ZI S Ml |Random Forests:

Microsoft Kinect Pose Recognition

Kinect algorithm CVPR Paper

Video

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BodyPartRecognition.pdf
https://www.youtube.com/watch?v=lntbRsi8lU8

	Decision trees
	Bagging and Random Forests
	Bagging
	Random Forests

