Statistical Machine Learning Hilary Term 2019

Pier Francesco Palamara

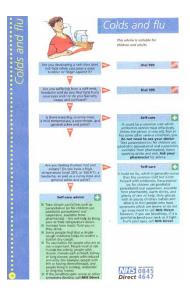
Department of Statistics University of Oxford

Slide credits and other course material can be found at:

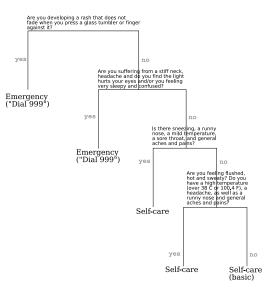
http://www.stats.ox.ac.uk/~palamara/SML19.html

February 22, 2019

Many decisions are tree-structured

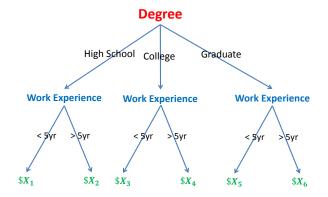


Many decisions are tree-structured



Many decisions are tree-structured

Employee salary

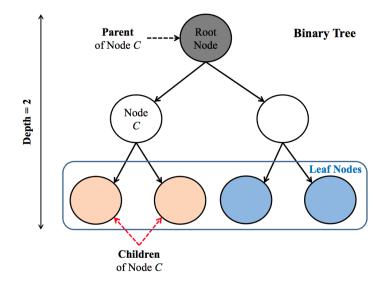


Terminology

- **Parent** of a node *c* is the immediate predecessor node.
- **Children** of a node *c* are the immediate successors of *c*, equivalently nodes which have *c* as a parent.
- **Branch** are the edges/arrows connecting the nodes.
- Root node is the top node of the tree; the only node without parents.
- Leaf nodes are nodes which do not have children.
- Stumps are trees with just the root node and two leaf nodes.
- A K-ary tree is a tree where each node (except for leaf nodes) has K children. Usually working with binary trees (K = 2).
- **Depth** of a tree is the maximal length of a path from the root node to a leaf node.

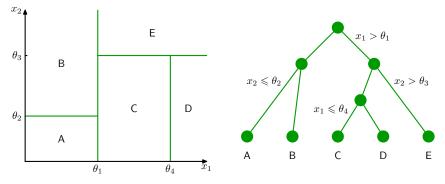
Examples

Terminology

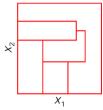


A tree partitions the feature space

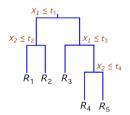
- A Decision Tree is a hierarchically organized structure, with each node splitting the data space into pieces based on value of a feature.
 - Equivalent to a partition of \mathcal{R}_d into K disjoint feature regions $\{\mathcal{R}_j, \ldots, \mathcal{R}_j\}$, where each $\mathcal{R}_j \subset \mathbb{R}^p$
 - On each feature region \mathcal{R}_j , the same decision/prediction is made for all $x \in \mathcal{R}_j$.



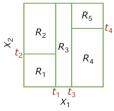
Partitions and regression trees



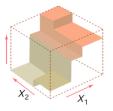
 (a) General partition that cannot be obtained from recursive binary splitting.



(c) Tree corresponding to the partition in the top right panel.



(b) Partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data.

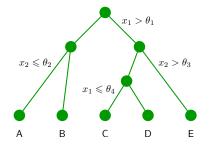


(d) A perspective plot of the prediction surface.

Learning a tree model

Three things to learn:

- The structure of the tree.
- 2 The threshold values (θ_i) .
- The values for the leaves (A, B, \ldots) .



Classification Tree

Classification Tree:

- Given the dataset $D = (x_1, y_1), \dots, (x_n, y_n)$ where $x_i \in \mathbb{R}, y_i \in Y = \{1, \dots, m\}.$
- minimize the misclassification error in each leaf
- the estimated probability of each class k in region \mathcal{R}_{i} is simply:

$$\beta_{jk} = \frac{\sum_{i} \mathbb{I}(y_i = k) \cdot \mathbb{I}(x_i \in \mathcal{R}_j)}{\sum_{i} \mathbb{I}(x_i \in \mathcal{R}_j)}$$

This is the frequency in which label k occurs in the leaf R_j. (These estimates can be regularized.)

Example: A tree model for deciding where to eat

Decide whether to wait for a table at a restaurant, based on the following attributes (Example from Russell and Norvig, AIMA)

- Alternate: is there an alternative restaurant nearby?
- Bar: is there a comfortable bar area to wait in?
- Fri/Sat: is today Friday or Saturday?
- Hungry: are we hungry?
- Patrons: number of people in the restaurant (None, Some, Full)
- Price: price range (\$, \$\$, \$\$\$)
- Raining: is it raining outside?
- Reservation: have we made a reservation?
- Type: kind of restaurant (French, Italian, Thai, Burger)
- Wait Estimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Example: A tree model for deciding where to eat

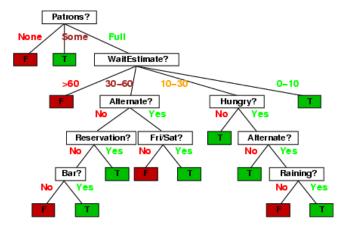
Choosing a restaurant

(Example from Russell & Norvig, AIMA)

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	Т
X_5	Τ	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Т	F	T	Some	\$\$	Т	T	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	Т
X_9	F	Т	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	Τ	Т	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Т	T	Т	Full	\$	F	F	Burger	<i>30–60</i>	Т

Classification of examples is positive (T) or negative (F)

A possible decision tree



Is this the best decision tree?

Decision tree training/learning

For simplicity assume both features and outcome are binary (take YES/NO values).

Algorithm 1 DecisionTreeTrain (*data*, *features*)

- 1: $guess \leftarrow$ the most frequent label in data
- 2: if all labels in *data* are the same then
- 3: return LEAF (guess)
- 4: else

5:

- $f \leftarrow$ the "best" feature \in *features*
- 6: $NO \leftarrow$ the subset of *data* on which f = NO
- 7: $YES \leftarrow$ the subset of *data* on which f = YES
- 8: $left \leftarrow \text{DecisionTreeTrain} (NO, features \{f\})$
- 9: $right \leftarrow \text{DecisionTreeTrain} (YES, features \{f\})$
- 10: **return** NODE(*f*, *left*, *right*)

11: end if

First decision: at the root of the tree

Which attribute to split?

Patrons? is a better choice—gives information about the classification

Idea: use information gain to choose which attribute to split

Information gain

- Basic idea: Gaining information reduces uncertainty
- Given a random variable *X* with *K* different values, (a_1, \ldots, a_K) , we can use different measures of "purity" of a node:
 - **Entropy** (measured in bits, $\max_{V} = 1$):

$$H[X] = -\sum_{k=1}^{\infty} P(X = a_k) \times \log_2 P(X = a_k)$$

• Misclassification error (max= 0.5): if c is the most common class label

$$1 - P(X = c)$$

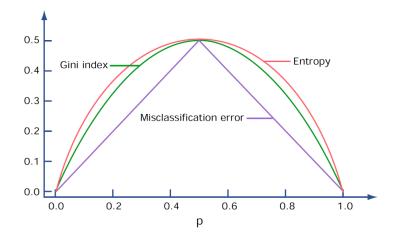
• GINI Index (max= 0.5):

$$\sum_{k=1}^{K} P(X = a_k)(1 - P(X = a_k))$$

• E.g. compare splits [(300, 100), (100, 300)] and [(200, 400), (200, 0)], taking average of scores for nodes produced (but note different max values). which node will each measure prefer, and would you agree?

C4.5 Tree algorithm: Classification uses entropy to measure uncertainty.
CART (class. and regression tree) algorithm: Classification uses Gini.

Different measures of uncertainty



Which attribute to split?

Patrons? is a better choice—gives information about the classification

Patron vs. Type?

By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie, smaller uncertainty (0.45 bit)

By choosing Type, we end up with uncertainty of I bit.

Thus, we choose Patron over Type.

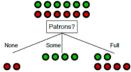
Uncertainty if we go with "Patron"

For "None" branch

$$-\left(\frac{0}{0+2}\log\frac{0}{0+2} + \frac{2}{0+2}\log\frac{2}{0+2}\right) = 0$$

For "Some" branch

$$-\left(\frac{4}{4+0}\log\frac{4}{4+0} + \frac{4}{4+0}\log\frac{4}{4+0}\right) = 0$$



For "Full" branch

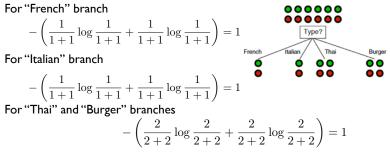
$$-\left(\frac{2}{2+4}\log\frac{2}{2+4} + \frac{4}{2+4}\log\frac{4}{2+4}\right) \approx 0.9$$

For choosing "Patrons"

weighted average of each branch: this quantity is called conditional entropy

$$\frac{2}{12} * 0 + \frac{4}{12} * 0 + \frac{6}{12} * 0.9 = 0.45$$

Conditional entropy for Type

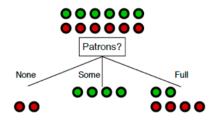


For choosing "Type"

weighted average of each branch:

$$\frac{2}{12} * 1 + \frac{2}{12} * 1 + \frac{4}{12} * 1 + \frac{4}{12} * 1 = 1$$

Do we split on "Non" or "Some"?



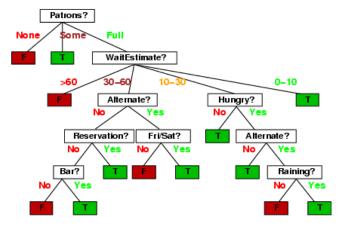
No, we do not

The decision is deterministic, as seen from the training data

		next split?									Patrons?			
V	We will look only at the 6 instances with										None Some Full			
Patrons == Full														
	Example	Attributes									, 	Larger	•	
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait		
	X_1	Τ	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т	_	
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F		
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т	2	
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т		
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F		
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т		
	X_7	F	T	F	F	None	\$	Т	F	Burger	0–10	F		
	X_8	F	F	F	T	Some	\$\$	Т	Т	Thai	0–10	Т		
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F		
	X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F		
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F		
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т		

Classification of examples is positive (T) or negative (F)

Greedily, we build



An Algorithm for Classification Trees

Assume binary classification for simplicity ($y_i \in \{0, 1\}$), and numerical features (see Section 9.2.4 in ESL for categorical).

- Start with $\mathcal{R}_1 = \mathcal{X} = \mathbb{R}^p$.
- **②** For each feature j = 1, ..., p, for each value $v \in \mathbb{R}$ that we can split on:
 - Split data set:

$$I_{<} = \{i: x_{i}^{(j)} < v\} \qquad \qquad I_{>} = \{i: x_{i}^{(j)} \ge v\}$$

2 Estimate parameters:

$$\beta_{<} = \frac{\sum_{i \in I_{<}} y_i}{|I_{<}|} \qquad \qquad \beta_{>} = \frac{\sum_{i \in I_{>}} y_i}{|I_{>}|}$$

Sompute the quality of split, e.g., using entropy (note: we take $0 \log 0 = 0$)

$$\frac{|I_{<}|}{|I_{<}|+|I_{>}|}\mathsf{B}(\beta_{<})+\frac{|I_{>}|}{|I_{<}|+|I_{>}|}\mathsf{B}(\beta_{>})$$

where

$$\mathsf{B}(q) = -[q \log_2(q) + (1-q) \log_2(1-q)]$$

Choose split, i.e., feature *j* and value *v*, with maximum quality.

Securse on both children, with datasets $(x_i, y_i)_{i \in I_{\leq}}$ and $(x_i, y_i)_{i \in I_{>}}$.

Comparing the features with conditional entropy

• Given two random variables X and Y, conditional entropy is

$$H[Y|X] = \sum_{k} P(X = a_k) \times H[Y|X = a_k]$$

- In the algorithm,
 - X: the attribute to be split (e.g. patrons)
 - Y: the labels (e.g. wait or not)
 - Estimated $P(X = a_k)$ is the weight in the quality calculation
- Relation to information gain

 $\operatorname{\mathsf{Gain}}[Y,X] = H[Y] - H[Y|X]$

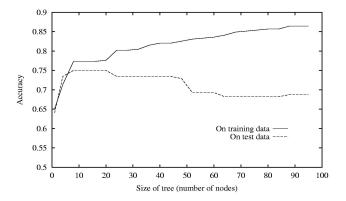
- When *H*[*Y*] is fixed, we need only to compare conditional entropy.
- Minimizing conditional entropy is equivalent to maximizing information gain.

Patrons vs Type

 $\begin{aligned} \text{Gain}[Y, \text{Patrons}] &= H[Y] - H[Y|\text{Patrons}] = 1 - 0.45 = 0.55\\ \text{Gain}[Y, \text{Type}] &= H[Y] - H[Y|\text{Type}] &= 1 - 1 &= 0 \end{aligned}$

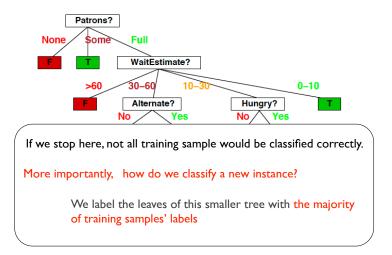
What is the optimal Tree Depth?

- We need to be careful to pick an appropriate tree depth.
- If the tree is too deep, we can overfit.
- If the tree is too shallow, we underfit
- Max depth is a hyper-parameter that should be tuned by the data.
- Alternative strategy is to create a very deep tree, and then to prune it.



Control the size of the tree

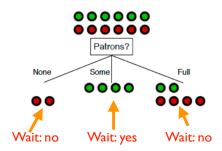
We would prune to have a smaller one



Example

Example

We stop after the root (first node)



Computational Considerations

Numerical Features

- We could split on any feature, with any threshold
- However, for a given feature, the only split points we need to consider are the the *n* values in the training data for this feature.
- If we sort each feature by these n values, we can quickly compute our impurity metric of interest (cross entropy or others), skipping values where labels are unchanged.
 - This takes $O(d n \log n)$ time (sorting *n* elements takes $O(n \log n)$ steps).

Categorical Features

- Assuming q distinct categories, there are $2^{q-1} 1$ possible binary partitions we can consider.
- However, things simplify in the case of binary classification (or regression, see Section 9.2.4 in ESL for details).

Summary of learning classification trees

Advantages

- Easily interpretable by human (as long as the tree is not too big)
- Computationally efficient
- Handles both numerical and categorical data
- It is parametric thus compact: unlike Nearest Neighborhood Classification, we do not have to carry our training instances around
- Building block for various ensemble methods (more on this later)

Disadvantages

- Heuristic training techniques
- Finding partition of space that minimizes empirical error is NP-hard.
- We resort to greedy approaches with limited theoretical underpinning.
- Unstable: small changes in input data lead to different trees. Mitigated by ensable methods (e.g. random forests, coming up).

Regression Tree

Regression Tree:

- Given the dataset $D = (x_1, y_1), \dots, (x_n, y_n)$ where $x_i \in \mathbb{R}, y_i \in Y = \{1, \dots, m\}.$
- minimize the squared loss (may use others!) in each leaf
- the parameterized function is:

$$\hat{f}(x) = \sum_{j=1}^{K} \beta_j \cdot \mathbf{I}(x \in \mathcal{R}_j)$$

Using squared loss, optimal parameters are:

$$\hat{\beta}_j = \frac{\sum_{i=1}^n y_i \cdot \mathbf{I}(x_i \in \mathcal{R}_j)}{\sum_{i=1}^n \mathbf{I}(x_i \in \mathcal{R}_j)}$$

i.e. the sample mean.

An Algorithm for Regression Trees

Assume numerical features (see Section 9.2.4 in ESL for categorical).

- Start with $\mathcal{R}_1 = \mathcal{X} = \mathbb{R}^p$.
- 2 For each feature j = 1, ..., p, for each value $v \in \mathbb{R}$ that we can split on:
 - Split data set:

$$I_{<} = \{i : x_{i}^{(j)} < v\} \qquad \qquad I_{>} = \{i : x_{i}^{(j)} \ge v\}$$

2 Estimate parameters:

$$\beta_{<} = \frac{\sum_{i \in I_{<}} y_i}{|I_{<}|} \qquad \qquad \beta_{>} = \frac{\sum_{i \in I_{>}} y_i}{|I_{>}|}$$

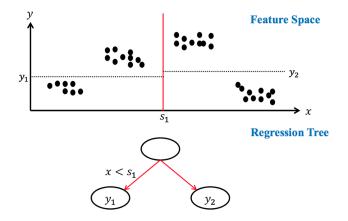
 Quality of split: highest quality is achieved for minimum squared loss, which is defined as

$$\sum_{i \in I_{<}} (y_i - \beta_{<})^2 + \sum_{i \in I_{>}} (y_i - \beta_{>})^2$$

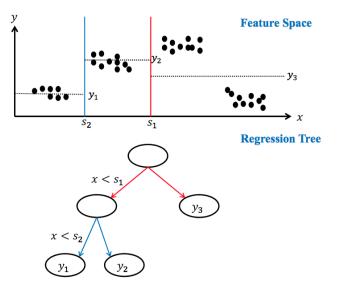
Choose split, i.e., feature j and value v, with maximum quality.

• Recurse on both children, with datasets $(x_i, y_i)_{i \in I_{<}}$ and $(x_i, y_i)_{i \in I_{>}}$.

Example of Regression Trees



Example of Regression Trees



Example of Regression Trees

