
Statistical Machine Learning
Hilary Term 2019

Pier Francesco Palamara

Department of Statistics
University of Oxford

Slide credits and other course material can be found at:
http://www.stats.ox.ac.uk/~palamara/SML19.html

February 15, 2019

http://www.stats.ox.ac.uk/~palamara/SML19.html

Logistic regression

Logistic regression

Logistic regression

Review

In LDA and QDA, we estimate p(x|y), but for classification we are mainly
interested in p(y|x)
Why not estimate that directly? Logistic regression1 is a popular way of
doing this.

1Despite the name “regression”, we are using it for classification!

Logistic regression

Linearity of log-odds and logistic function
a + b€x models the log-odds ratio:

log p(Y = +1|X = x; a, b)
p(Y = ≠1|X = x; a, b) = a + b€x.

Solve explicitly for conditional class probabilities (using
p(Y = +1|X = x; a, b) + p(Y = ≠1|X = x; a, b) = 1):

p(Y = +1|X = x; a, b) = 1
1 + exp(≠(a + b€x)) =: s(a + b€x)

p(Y = ≠1|X = x; a, b) = 1
1 + exp(+(a + b€x)) = s(≠a ≠ b€x)

where s(z) = 1/(1 + exp(≠z)) is the logistic function.

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

Logistic regression

Fitting the parameters of the hyperplane
How to learn a and b given a training data set (xi, yi)n

i=1?
Consider maximizing the conditional log likelihood:

¸(a, b) =
nÿ

i=1
log p(yi|xi) =

nÿ

i=1
log s(yi(a + b€xi)).

Equivalent to minimizing the empirical risk associated with the log loss:

‚Rlog(fa,b) = 1
n

nÿ

i=1
≠ log s(yi(a+b€xi)) = 1

n

nÿ

i=1
log(1+exp(≠yi(a+b€xi)))

Logistic regression

Logistic Regression

Log-loss is differentiable, but it is not possible
to find optimal a, b analytically.
For simplicity, absorb a as an entry in b by
appending ’1’ into x vector, as we did before.
Objective function:

‚Rlog = 1
n

nÿ

i=1
≠ log s(yix

€
i b)

Logistic Function

s(≠z) = 1 ≠ s(z)
Òzs(z) = s(z)s(≠z)

Òz log s(z) = s(≠z)
Ò2

z log s(z) = ≠s(z)s(≠z)

Differentiate wrt b:

Òb
‚Rlog = 1

n

nÿ

i=1
≠s(≠yix

€
i b)yixi

Ò2
b

‚Rlog = 1
n

nÿ

i=1
s(yix

€
i b)s(≠yix

€
i b)xix

€
i ≤ 0.

We cannot set Òb
‚Rlog = 0 and solve: no closed form solution. We’ll use

numerical methods.

w

g(w) Non-convex

Any local minimum is a global minimum

Where Will We Converge?

Least Squares, Ridge Regression and
Logistic Regression are all convex!

…

…

w

f(w) Convex

w*

Multiple local minima may exist
w*w!

…

Logistic regression Gradient descent

Convexity
How to determine convexity? f(x) is convex if

f
ÕÕ(x) Ø 0

Examples:
f(x) = x2, f

ÕÕ(x) = 2 > 0
How to determine convexity in this case?

Matrix of second-order derivatives (Hessian)

H =

Q

cccca

ˆ2f(x)
ˆx12

ˆ2f(x)
ˆx1ˆx2

. . . ˆ2f(x)
ˆx1ˆxD

ˆ2f(x)
ˆx1ˆx2

ˆ2f(x)
ˆx2

2
. . . ˆ2f(x)

ˆx2ˆxD

.
ˆ2f(x)
ˆx1ˆxD

ˆ2f(x)
ˆx2ˆxD

. . . ˆ2f(x)
ˆx2

D

R

ddddb

How to determine convexity in the multivariate case?

If the Hessian is positive semi-definite H ≤ 0 , then f is convex.
A matrix H is positive semi-definite if and only if, ’z,

zT
Hz =

ÿ

j,k

Hj,kzjzk Ø 0

Logistic regression Gradient descent

Logistic Regression

Hessian is positive-definite: objective function is convex and there is a

single unique global minimum.
Many different algorithms can find optimal b, e.g.:

Gradient descent:

b
new = b + ‘

1
n

nÿ

i=1

s(≠yix
€
i b)yixi

Stochastic gradient descent:

b
new = b + ‘t

1
|I(t)|

ÿ

iœI(t)

s(≠yix
€
i b)yixi

where I(t) is a subset of the data at iteration t, and ‘t æ 0 slowly
(
q

t
‘t = Œ,

q
t
‘

2
t < Œ).

Conjugate gradient, LBFGS and other methods from numerical analysis.
Newton-Raphson:

b
new = b ≠ (Ò2

b
‚Rlog)≠1Òb ‚Rlog

This is also called iterative reweighted least squares.

Logistic regression Gradient descent

Iterative reweighted least squares (IRLS)

We can write gradient and Hessian in a more compact form. Define
µi = s(x€

i b), and the diagonal matrix S with µi(1 ≠ µi) on its diagonal.
Also define the vector c where ci = (yi = +1). Then

Òb
‚Rlog = 1

n

nÿ

i=1
≠s(≠yix

€
i b)yixi

= 1
n

nÿ

i=1
xi(µi ≠ ci)

= X
€(µ ≠ c)

Ò2
b

‚Rlog = 1
n

nÿ

i=1
s(yix

€
i b)s(≠yix

€
i b)xix

€
i

= X
€

SX

Logistic regression Gradient descent

Iterative reweighted least squares (IRLS)
Let bt be the parameters after t “Newton steps”.
The gradient and Hessian at step t are given by:

gt = X
T(µt ≠ c) = ≠X

T(c ≠ µt)
Ht = X

T
StX

The Newton Update Rule is:

bt+1 = bt ≠ H
≠1
t gt

= bt + (XT
StX)≠1

X
T(c ≠ µt)

= (XT
StX)≠1

X
T
St(Xbt + S

≠1
t (c ≠ µt))

= (XT
StX)≠1

X
T
Stzt

Where zt = Xbt + S
≠1
t (c ≠ µt). Then bt+1 is a solution of the “weighted least

squares” problem:

minimise
Nÿ

i=1
St,ii(zt,i ≠ b

T
xi)2

Logistic regression Gradient descent

Linearly separable data

Assume that the data is linearly separable, i.e. there is a scalar – and a vector
— such that yi(– + —€xi) > 0, i = 1, . . . , n. Let c > 0. The empirical risk for
a = c–, b = c— is

‚Rlog(fa,b) = 1
n

nÿ

i=1
log(1 + exp(≠cyi(– + —€xi)))

which can be made arbitrarily close to zero as c æ Œ, i.e. soft classification
rule becomes ±Œ (overconfidence) æ overfitting.

Regularization provides a solution to this problem.

Logistic regression Gradient descent

Multi-class logistic regression

The multi-class/multinomial logistic regression uses the softmax function to
model the conditional class probabilities p (Y = k|X = x; ◊), for K classes
k = 1, . . . , K, i.e.,

p (Y = k|X = x; ◊) =
exp

!
w€

k x + bk

"
qK

¸=1 exp
!
w€

¸ x + b¸

" .

Parameters are ◊ = (b, W) where W = (wkj) is a K ◊ p matrix of weights and
b œ RK is a vector of bias terms.

Logistic regression Gradient descent

Multi-class logistic regression

Logistic regression Gradient descent

Crab Dataset

library(MASS)
load crabs data
data(crabs)
ct <- as.numeric(crabs[,1])-1+2*(as.numeric(crabs[,2])-1)
project into first two LD
cb.lda <- lda(log(crabs[,4:8]),ct)
cb.ldp <- predict(cb.lda)
x <- cb.ldp$x[,1:2]
y <- as.numeric(ct==0)
eqscplot(x,pch=2*y+1,col=y+1)

Logistic regression Gradient descent

Crab Dataset

visualize decision boundary
gx1 <- seq(-6,6,.02)
gx2 <- seq(-4,4,.02)
gx <- as.matrix(expand.grid(gx1,gx2))
gm <- length(gx1)
gn <- length(gx2)
gdf <- data.frame(LD1=gx[,1],LD2=gx[,2])

lda <- lda(x,y)
y.lda <- predict(lda,x)$class
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==y.lda))
y.lda.grid <- predict(lda,gdf)$class
contour(gx1,gx2,matrix(y.lda.grid,gm,gn),

levels=c(0.5), add=TRUE,d=FALSE,lty=2,lwd=2)

Logistic regression Gradient descent

Crab Dataset

logistic regression
xdf <- data.frame(x)
logreg <- glm(y ~ LD1 + LD2, data=xdf, family=binomial)
y.lr <- predict(logreg,type="response")
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==(y.lr>.5)))
y.lr.grid <- predict(logreg,newdata=gdf,type="response")
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,lwd=1)
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.5), add=TRUE,d=FALSE,lty=1,lwd=2)

logistic regression with quadratic interactions
logreg <- glm(y ~ (LD1 + LD2)^2, data=xdf, family=binomial)
y.lr <- predict(logreg,type="response")
eqscplot(x,pch=2*y+1,col=2-as.numeric(y==(y.lr>.5)))
y.lr.grid <- predict(logreg,newdata=gdf,type="response")
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.1,.25,.75,.9), add=TRUE,d=FALSE,lty=3,lwd=1)
contour(gx1,gx2,matrix(y.lr.grid,gm,gn),

levels=c(.5), add=TRUE,d=FALSE,lty=1,lwd=2)

Logistic regression Gradient descent

Crab Dataset : Blue Female vs. rest

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−4
−2

0
2

4

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−4
−2

0
2

4

Comparing LDA and logistic regression.

Logistic regression Gradient descent

Crab Dataset

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−4
−2

0
2

4

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

−4 −2 0 2 4 6

−4
−2

0
2

4

Comparing logistic regression with and without quadratic interactions.

Logistic regression Gradient descent

Logistic regression Python demo

Single-class: https://github.com/vkanade/mlmt2017/blob/
master/lecture11/Logistic%20Regression.ipynb

Multi-class: https://github.com/vkanade/mlmt2017/blob/master/
lecture11/Multiclass%20Logistic%20Regression.ipynb

https://github.com/vkanade/mlmt2017/blob/master/lecture11/Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Multiclass%20Logistic%20Regression.ipynb
https://github.com/vkanade/mlmt2017/blob/master/lecture11/Multiclass%20Logistic%20Regression.ipynb

Logistic regression Gradient descent

Generative vs. Discriminative

Generative vs. Discriminative learning Generative vs Discriminative

Generative vs Discriminative Learning

Machine learning: learn a (random) function that maps a variable X
(feature) to a variable Y (class) using a (labeled) dataset
D = {(X1, Y1) , . . . , (Xn, Yn)}.

Generative Approach: learn P (Y, X) = P (Y |X) P (X).
Discriminative Approach: learn P (Y |X).

Generative vs. Discriminative learning Generative vs Discriminative

Generative Learning

Generative Approach: Finds a probabilistic model (a joint distribution
P (Y, X)) that explicitly models the distribution of both the features and
the corresponding labels (classes).
Example techniques: LDA, QDA, Naive Bayes (coming soon), Hidden
Markov Models, etc.

Generative vs. Discriminative learning Generative vs Discriminative

Discriminative Learning

Discriminative Approach: Finds a good fit for P (Y |X) without explicitly
modeling the generative process.
Example techniques: linear regression, logistic regression, K-nearest
neighbors (coming soon), SVMs, perceptrons, etc.
Example problem: 2 classes, separate the classes.

Generative vs. Discriminative learning Generative vs Discriminative

Generative vs Discriminative Learning
Generative Approach: Finds parameters that explain all data.

‚◊ = argmax
◊

nÿ

i=1
log p(xi, yi|◊)

Makes use of all the data.
Flexible framework, can incorporate many tasks (e.g. classification,
regression, semi-supervised learning, survival analysis, generating new data
samples similar to the existing dataset, etc).
Stronger modeling assumptions, which may not be realistic (Gaussianity,
independence of features).

Discriminative Approach: Finds parameters that help to predict only
relevant data.

‚◊ = argmin
◊

1
n

nÿ

i=1
L(yi, f◊(xi)) or ‚◊ = argmax

◊

nÿ

i=1
log p(yi|xi, ◊)

Weaker modeling assumptions (thus often fewer violated assumptions and
better calibration of probabilities).
Learns to perform better on the given tasks.
Less immune to overfitting.
Easier to work with preprocessed data „(x).

Naïve Bayes

Naïve Bayes

Naïve Bayes Naïve Bayes

Naïve Bayes: overview

Naïve Bayes: another plug-in classifier with a simple generative model -
it assumes all measured variables/features are independent given the
label.
Easy to mix and match different types of features, handle missing data.
Often used with categorical data, e.g. text document classification.

A basic standard model for text classification consists of considering a
pre-specified dictionary of p words and summarizing each document i by a
binary vector xi (“bag-of-words”):

x
(j)
i =

;
1 if word j is present in document
0 otherwise.

where the presence of the word j is the j-th feature/dimension.

Naïve Bayes Naïve Bayes

Toy Example

Predict voter preference in US elections

Voted in Annual State Candidate
2012? Income Choice

Y 50K OK Clinton
N 173K CA Clinton
Y 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K IL Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump
N 100K NY ?

Naïve Bayes Naïve Bayes

Naïve Bayes Classifier (NBC)

In order to fit a generative model, we’ll express the joint distribution as
p(x, y | ◊, fi) = p(y | fi) · p(x | y, ◊)

To model p(y | fi), we’ll use parameters fic such that
q

c fic = 1
p(y = c | fi) = fic

For class-conditional densities, for class c = 1, . . . , C, we will have a
model: p(x | y = c, ◊c)

We assume that the features are conditionally independent given the
class label

p(x | y = c, ◊c) =
DŸ

j=1
p(xj | y = c, ◊jc)

Clearly, the independence assumption is “naïve” and never satisfied. But
model fitting becomes very very easy.
Although the generative model is clearly inadequate, it actually works
quite well. Goal is predicting class, not modelling the data!

	Logistic regression
	Logistic Regression

	Logistic regression
	Gradient descent

	Generative vs. Discriminative learning
	Generative vs Discriminative

	Naïve Bayes
	Naïve Bayes

	Naïve Bayes Model

