
Statistical Machine Learning HT 2019 - Problem Sheet 3
Please send any comments or corrections to Pier Palamara (email on course website).

1. LDA and QDA. Suppose we have a two-class setup with classes −1 and 1, i.e., Y = {−1, 1},
and a 2-dimensional predictor variable X . We find that the means of the two groups are at µ̂−1 =
(−1,−1)> and µ̂1 = (1, 1)> respectively. The estimated prior class probabilities π̂1 and π̂−1 are
equal.

(a) Applying LDA, the covariance matrix is estimated to be, for some value of 0 ≤ ρ ≤ 1,

Σ̂ =

(
1 ρ
ρ 1

)
.

Find the decision boundary as a function of ρ.

(b) Suppose instead that, we model each class with its own covariance matrix. We estimate the
covariance matrices for group -1 as

Σ̂−1 =

(
5 0
0 1/5

)
,

and for group 1 as

Σ̂1 =

(
1/5 0
0 5

)
.

Describe the decision rule and draw a sketch of it in the two-dimensional plane.

2. Naive Bayes vs Logistic regression. The binary Naive Bayes classifier has interesting connec-
tions to the logistic regression classifier. You will show that, under certain assumptions, the Naive
Bayes likelihood function is identical in form to the likelihood function for logistic regression.
You will then derive the MLE parameter estimates under these assumptions.

(a) Suppose X = {X1, . . . , XD} is a continuous vector in RD representing the features, and
Y is a binary random variable with values in {0, 1} representing the class labels. Let the
following assumptions hold:

• The label variable Y follows a Bernoulli distribution, with parameter π = P (Y = 1).

• For each featureXj , we have P (Xj |Y = k) follows a Gaussian distribution of the form
N (µjk, σj).

Using the Naive Bayes assumption that states “for all j′ 6= j, Xj and Xj′ are condition-
ally independent given Y ”, compute P (Y = 1|X) and show that it can be written in the
following form:

P (Y = 1|X) =
1

1 + exp(−w0 + w>X)
.

Specifically, you need to find the explicit form of wo and w in terms of π, µjk, σj , for
j = 1, . . . , D and k ∈ {0, 1}.

(b) Suppose a training set with N examples (x1, y1), (x2, y2), . . . , (xN , yN ) is given, where
xi = (xi1, . . . , xiD)> is a D-dimensional feature vector, and yi ∈ {0, 1} is its correspond-
ing label. Using the assumptions in 1.a (not the result), provide the maximum likelihood
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estimation for the parameters of the Naive Bayes with Gaussian assumption. In other words,
you need to provide the estimates for π, µjk, and σj , for j = 1, . . . , D and k ∈ {0, 1}.

3. Missing data in generative/discriminative models. Assume we trained a classifier using data
D = {xi, yi}ni=1 where xi ∈ Rp and yi ∈ {1, 2, ...,K}. We are interested in classifying a new
input vector x̃. However, we have only been able to collect p − 1 features, say

(
x̃(2), ..., x̃(p)

)
and x̃(1) is missing. Explain whether or not it is possible to use the trained classifier to classify
this incomplete input vector in the cases listed below. If it is possible, how do you classify the
incomplete test vector?

Note: You do not need to calculate any integrals in this question.

(a) A naı̈ve Bayes model, with

gk(x) =

p∏
j=1

p(x(j)|φkj),

i.e. conditioned upon Y = k, you assume that the features are independent and feature x(j)

has probability mass function/density p(x(j)|φkj).

(b) An LDA model, i.e.
gk(x) = N (x;µk,Σ)

(c) Generally, what condition on the conditional density/pmf gk(x) would allow easy classifi-
cation (i.e, without numerical integration) in the presence of missing features for generative
classifiers like LDA or naı̈ve Bayes?

(d) A logistic regression model, i.e.

p(Y = y|X = x) = s(y(a+ b>x))

where y ∈ {+1,−1}.

4. KNN and the curse of dimensionality. Consider using a k-NN classifier where the real-valued
features are uniformly distributed in the p-dimensional unit cube. Suppose we are interested in
estimating the distribution over class labels around a test point x by using neighbours within a
hyper-cube centred at x.

(a) Suppose we wish to use a fraction α of the training data to estimate the distribution over
class labels at x. What should be the edge length of this hyper-cube to ensure that it includes
on average α% of the training data? If p = 10 and α = 1%, compute the edge length of this
hyper-cube. In this scenario, is k-NN a “local” algorithm, i.e. using only local neighbours to
x?

(b) Assuming you have access to say n = 500 training data (and p = 10 as before), does it
appear reasonable to perform k-NN for large values of k (say k > 10)? Explain briefly why
or why not.

5. ROC. The receiver operating characteristic (ROC) curve plots the sensitivity against the speci-
ficity of a binary classifier as the threshold for discrimination is varied.

Let the data space be R, and denote the class-conditional densities with g0(x) and g1(x) for x ∈ R
and for the two classes 0 and 1. Consider a classifier that classifies x as class 1 if x ≥ c, where
threshold c varies from −∞ to +∞.

(a) Give expressions for the (population versions of) specificity and sensitivity of this classifier.
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(b) Show that the AUC corresponds to the probability that X1 > X0, where data items X1 and
X0 are independent and come from classes 1 and 0 respectively.

6. Coding: LDA. Download
http://www.stats.ox.ac.uk/˜palamara/teaching/SML19/wine.data

and load it using read.table("wine.data",sep=","). Description of the dataset is
given at https://archive.ics.uci.edu/ml/datasets/Wine. The goal is to build a clas-
sifier for predicting the cultivars given in column 1. Train LDA classifier on a random subset of
50% of the data, and show the projections of the data vectors as well as the decision boundaries
in the 2D LDA component space. Then predict the cultivars for the other 50% of the data and
plot these in the LDA component space as well (using a different pch). How many errors did the
classifier make (a) on the training set, (b) on the test set?

7. Coding: logistic regression (and KNN). (Exercise 2.8 in Elements of Statistical Learning) Com-
pare the classification performance of logistic regression, regularized logistic regression (and
optionally k-nearest neighbor classification) on the ZIP code digit image dataset, restricting to
only the 2’s and 3’s. Investigate L1 and L2 regularization alone and in combination (the “elastic
net”). Show both training and testing error for each choice. The ZIP code data are available from
https://web.stanford.edu/˜hastie/ElemStatLearn/data.html. You can read
more about the data in Section 11.7 of Elements of Statistical Learning.

8. Optional: 1-NN risk in binary classification. Let {(Xi, Yi)}ni=1 be a training dataset where
Xi ∈ Rp and Yi ∈ {0, 1}. We denote by gk (x) the conditional density of X given Y = k and
assume that gk (x) > 0 for all x ∈ Rp, and the class probabilities as πk = P (Y = k). We further
denote q (x) = P (Y = 1|X = x).

(a) Consider the Bayes classifier (minimizing risk w.r.t. 0/1 loss 1{f(X) 6= Y }):

fBayes (x) = arg max
k∈{0,1}

πkgk (x) .

Write the conditional expected loss P [f(X) 6= Y |X = x] at a given test point X = x in
terms of q (x). [The resulting expression should depend only on q (x)].

(b) The 1-nearest neighbour (1-NN) classifier assigns to a test data point x the label of the closest
training point; i.e. f1NN (x) = y (class of nearest neighbour in the training set). Given some
test point X = x and its nearest neighbour X ′ = x′, what is the conditional expected loss
P [f1NN(X) 6= Y |X = x,X ′ = x′] of the 1-NN classifier in terms of q (x) , q (x′)?

(c) As the number of training examples goes to infinity, i.e. n → ∞, assume that the train-
ing data fills the space such that q (x′) → q (x), ∀x. Give the limit (as n → ∞) of
P [f1NN(X) 6= Y |X = x]. If we denote by RBayes = P

[
Y 6= fBayes (X)

]
and R1NN =

P [Y 6= f1NN (X)], show that for sufficiently large n

RBayes ≤ R1NN ≤ 2RBayes
(
1−RBayes

)
.
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