Statistical Programming: Worksheet 6

1. Numbers. Prof. Goldschmidt has 200 square tiles with which to decorate a wall of the kitchen in the new Department of Statistics building. 20 of the tiles are red, 30 blue, and the rest are white. Write down a formula for the number of patterns she can create.

How many digits does this number have?

How many digits does 1000! have?

- **2. Metropolis Hastings.** Suppose that $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \text{Gamma}(\alpha, \beta)$, and let α and β have independent Exponential(1) priors.
 - (a) Write a function to evaluate the log-posterior of α and β given data. The function should have arguments x, alpha and beta.
 - (b) Write a function to perform a single Metropolis-Hastings step to explore the posterior above. Use a proposal

$$\alpha' = \alpha + \sigma Z_1$$
 $\beta' = \beta + \sigma Z_2$

for Z_1, Z_2 independent standard normals (i.e. $q(\alpha' | \alpha) \sim N(\alpha, \sigma^2)$.) It should take as arguments x, alpha, beta and sigma.

- (c) Write a function to run the Metropolis-Hastings algorithm for N steps and return an $N \times 2$ matrix of the parameter values. It should take as input the data \mathbf{x} , number of steps N, starting values alpha and beta, and proposal standard deviation sigma.
- (d) The file airpol.txt contains daily PM2.5 readings taken from various measuring stations around Seattle during 2015. Read in the data as a vector and plot it in a histogram.

```
x <- scan("airpol.txt")
hist(x, breaks = 100, freq = FALSE)</pre>
```

Model the data as i.i.d. Gamma distributed observations using the model above. Run your Metropolis-Hastings algorithm for 5,000 steps with starting point $\alpha = 1$, $\beta = 1$. Plot your output and investigate different values of $\sigma \in \{0.01, 0.02, 0.05\}$.

```
out <- run_mh(x, 5000, alpha = 1, beta = 1, sigma = 0.02)
plot(out)</pre>
```

(e) Find the posterior means for α and β . Plot the density of the corresponding Gamma distribution over the histogram of the data.

3. Image Reconstruction.*

(a) Let an $n \times n$ matrix $Y = (y_{ij})$ of ± 1 s follow the distribution of the Ising model with parameter θ , so that

$$\pi(Y) \propto \exp \left\{ \theta \sum_{(i,j) \sim (i'j')} y_{ij} y_{i'j'} \right\}$$

where $(i, j) \sim (i'j')$ if either $i = i' \pm 1$ and j = j', or vice versa (i.e. they differ by exactly one column or one row, but not both).

Let $\tilde{Y} = Y$ except that $\tilde{y}_{ij} = 1 - y_{ij}$ (so they are equal except for a single entry). Show that

$$\log \pi(\tilde{Y}) - \log \pi(Y) = \theta(d_{i,j} - 2a_{i,j})$$

where $d_{i,j}$ is the number of pixels adjacent to i, j, and $a_{i,j}$ is the number of adjacent pixels which have the same value as y_{ij} .

(b) Construct a Metropolis-Hasting algorithm to target π . First, look at the function $mh_step()$ in the file MHcode.R on the website. The function performs one M-H step by proposing to flip Y[r,c].

Complete the function by replacing the questions marks with code to calculate $\log \alpha$. Comment the code to show you understand what the rest of the function is doing.

- (c) Now create a function with arguments n, N and theta which creates an $n \times n$ matrix with random entries 0 or 1, and then performs N M-H steps by calling $mh_step()$. When finished, it should return the state of the chain.
- (d) Run the function for n = 50 and values $\theta = 0.2, 0.5, 0.8$ (you'll probably need $N > 10^5$ to get reasonable convergence). You can plot your solution using the image() function:

```
> out <- mh_ising(50, theta=0.5, N=1e5)
> image(out)
```

(e) Consider an $n \times n$ matrix $X = (x_{ij})$ of independent Bernoulli random variables, where

$$P(x_{ij} = 1) = \begin{cases} 1 - p & \text{if } y_{ij} = 0\\ p & \text{if } y_{ij} = 1 \end{cases}$$

for an unknown matrix of numbers $Y = (y_{ij})$. Defining \tilde{Y} as in (a), show that

$$\log L(\tilde{Y}; X) - \log L(Y; X) = \begin{cases} +\log \frac{p}{1-p} & \text{if } y_{ij} \neq x_{ij} \\ -\log \frac{p}{1-p} & \text{if } y_{ij} = x_{ij} \end{cases},$$

where L(Y;X) is the likelihood for the unknown parameter Y given X.

(f) Read in the data and look at it:

```
X <- as.matrix(read.table("image_noisy.txt"))
image(X)</pre>
```

Modify your previous M-H functions to accept a matrix X of data as an argument, and to include the change in the likelihood in your acceptance ratio α . Have the function return the estimated posterior mean of the chain (i.e. the average position of each pixel over the iterations).

Run the chain for a million iterations, setting $p = \frac{2}{3}$ and $\theta = 0.8$, and plot the results.