
R Programming: Worksheet 2

By the end of the practical you should feel confident writing and calling functions, and
using if(), for() and while() constructions.

1. Review

(a) Let t = 2: create a vector with (i + 1)th entry e−tti

i! for i = 0, . . . , 10 (you might
want to use the function factorial() for this).

(b) Write a function with arguments t and n that evaulates
∑n

i=0
e−tti

i! .

(c) Write your function again using a for() loop. Do not use vectors, or the sum()

function. Check it gives the same answers as (b).

2. Solving a Quadratic. Write a function with three arguments a, b and c, that returns
the real roots of the equation ax2 + bx + c = 0, if any. Your function should behave
well if a = 0 and return an empty vector when there are no real roots.

3. Sieve of Eratosthenes. The Sieve of Eratosthenes is a method for finding all the
prime numbers less than some specified n. Here is an outline of the algorithm:

• Create a vector x of integers from 2 to n, and an empty vector p.

• Given x, append the first element (say z) to p; then remove any multiples of z

(including z itself) from x.

• Stop when x is empty, and return p.

Write a function to implement this of Eratosthenes. It should take one argument n,
and return all the primes up to n.

4. Random Walks. Write a function rndwlk, with an argument k, that simulates a
symmetric random walk (see lecture), stopping when the walk reaches k (or −k). After
stopping it should return the entire walk.

Try calling plot(rndwlk(10)) a few times to see how it looks.

5. Simulating Discrete Distributions. In lectures you’ve seen that we can sample X
from a discrete distribution on {1, . . . , k} as follows: let pi = P (X = i). Then:

• generate U ∼ Unif[0, 1];

• set X = min{i |
∑i

j=1 pj ≥ U}.

Write a function that, given p containing (p1, . . . , pk) can simulate X from this distri-
bution. You may find the function which() useful.

Modify your function so that it takes an argument n, and produces a vector of n i.i.d.
values from the distribution p. Comment on how you could check that your function
worked as expected.

6. Double for() Loop. Using two for() loops, write a function with an argument n,
which constructs the n× n matrix with entries aij = i− j.

1

7. Rejection Sampling. We will write an R function to simulate X ∼ N(0, 1) using re-
jection sampling with the double exponential proposal. That is from a random variable
Y with density

fY (y) = exp(−|y|), y ∈ R.

(i) Write a function to simulate n i.i.d. values of Y . [Hint: you might want to start
thinking about how to simulate an exponential random variable.]

(ii) Write a function implementing rejection for X. The algorithm is:

1. simulate Y ∼ exp(−|x|) and U ∼ U(0, 1);

2. if U < exp(−Y 2/2 + |Y | − 1/2) accept X = Y and stop. Otherwise repeat 1.

[Hint: you can do this using a while statement. You should call the function you
wrote in (a) to simulate Y . Your function should have no inputs, and return the
simulated value of X.]

(iii) Test your rejection sampler by simulating 1000 samples and checking they are
normal using the qqnorm() function.

8. Moving Averages

(a) Write a function to calculate the moving averages of length 3 of a vector (x1, . . . , xn)T .
That is, it should return a vector (z1, . . . , zn−2)

T , where

zi =
1

3
(xi + xi+1 + xi+2) , i = 1, . . . , n− 2.

Call this function ma3().

(b) Write a function which takes two arguments, x and k, and calculates the moving
average of x of length k. [Use a for() loop.]

(c) How does your function behave if k is larger than (or equal to) the length of x?
You can tell it to return an error in this case by using the stop() function. Do so.

(d) How does your function behave if k = 1? What should it do? Fix it if necessary.

2

