Statistical Programming: Worksheet 1

Bits with an asterisk (*) are slightly harder, and are either non-examinable or will be covered later.

1. Sequences. Generate the following sequences using rep(), seq() and arithmetic:
(a) $1,3,5,7, \ldots, 21$.
(b) $50,47,44, \ldots, 14,11$.
(c) $1,10,100, \ldots, 10^{9}$.
(d) $0,1,2,3,0, \ldots, 3,0,1,2,3$ [with each entry appearing 6 times]
(e) $0,0,0,1,1,1,2, \ldots, 4,4,4$.
(f) $1,2,5,10,20,50,100, \ldots, 5 \times 10^{4}$.

Can any of your answers be simplified using recycling?
2. Arithmetic. Create a vector containing the following sequences:
(a) $\cos \left(\frac{\pi n}{3}\right)$, for $n=0, \ldots, 10$.
(b) $1,9,98,997, \ldots, 999994$.
(c) $e^{n}-3 n$, for $n=0, \ldots, 10$.
(d) $3 n \bmod 7$, for $n=0, \ldots, 10$.

Let

$$
S_{n}=\sum_{i=1}^{n} \frac{(-1)^{i+1}}{2 i-1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots+\frac{(-1)^{n+1}}{2 n-1}
$$

You will recall that $\lim _{n} S_{n}=\pi / 4$.
(e) Evaluate $4 S_{10}, 4 S_{100}$ and $4 S_{1000}$. [Hint: use the sum() function.]
(f) Create a vector with entries $S_{i}-\frac{\pi}{4}$, for $i=1, \ldots, 1000$. [Hint: try creating the vector with entries S_{i} first; the function cumsum() may be useful.]
3. Subsetting

Create a vector x of normal random variables as follows:

```
> set.seed(123)
> x <- rnorm(100)
```

The set.seed() fixes the random number generator so that we all obtain the same x; changing the argument 123 to something else will give different results. This is useful for replication.

Give commands to select a vector containing:
(a) the 25 th, 50 th and 75 th elements;
(b) the first 25 elements;
(c) all elements except those from the 31 st to the 40 th.

Recall the logical operators I, \& and !. Give commands to select:
(d) all values larger than 1.5 (how many are there?);
(e) what about the entries that are either >1.5 or <-1 ? Keep the ordering the same as in the original vector.
4. Monte Carlo Integration. Now let's try some simple examples related to what you've studied in lectures. Suppose we have $Z \sim N(0,1)$ and want to estimate $\theta=\mathbb{E} \phi(Z)$: we can generate a large number of independent normals, Z_{1}, \ldots, Z_{n} and then look at the sample mean:

$$
\frac{1}{n} \sum_{i=1}^{n} \phi\left(Z_{i}\right)
$$

Let's try this for $\phi(x)=x^{4}$; generate $n=10000$ standard normal random variables in a vector called Z .

Now, find the sample mean of Z^{4}, and have a look at the values you get. Try the summary () and hist() functions to help you understand the data:

```
> mean(Z^4)
> summary(Z^4)
> hist(Z^4, breaks = 250) # notice how skewed this is!
```

Using the central limit theorem we also know that a $(1-\alpha)$-confidence interval is given by

$$
\hat{\theta}_{n} \pm c_{\alpha} \frac{S_{\phi(Z)}}{\sqrt{n}}
$$

where

$$
S_{\phi(Z)}^{2} \equiv \frac{1}{n-1} \sum_{i=1}^{n}\left(\phi\left(Z_{i}\right)-\theta_{n}\right)^{2}
$$

Calculate $S_{\phi(Z)}^{2}$ using the mean and sum functions. Check that using var (Z~4) gives the same answer.
You can get the quantiles of a normal distribution using qnorm(). For example:

```
> qnorm(0.975)
## [1] 1.959964
```

Use this function with your work above to obtain a 99% confidence interval for the value of $\mathbb{E} \phi(Z)$.
5. Records.* Let X_{1}, X_{2}, \ldots be independent and identically distributed continuous random variables. Call i a record if $X_{i}>X_{j}$ for all $j<i$ (trivially including $i=1$). Let R_{t} be the index of the t th such record.

Suppose we have a vector x and want to find the indices that correspond to records. Using the cummax () function with which() and ==, work out commands to give you a vector of the incides of records.

Thinking about the inversion method of random variables, can you explain why the distribution of R_{t} does not depend upon the distribution of the X_{i} s?

