Theorem 1. Let

$$
\mu(k)=\frac{1}{1+f(k)} \prod_{l=0}^{k-1} \frac{f(l)}{1+f(l)} \quad \text { for } k \in \mathbb{N} \cup\{0\}
$$

which is a sequence of probability weights. Then, almost surely,

$$
\lim _{N \rightarrow \infty} X_{N}^{\mathrm{in}}=\mu
$$

in total variation norm.
We start by showing that μ is a probability distribution with $\mu Q=0$, where

$$
Q=\left(\begin{array}{ccccc}
-f(0) & f(0) & & & \\
1 & -(f(1)+1) & f(1) & & \\
1 & & -(f(2)+1) & f(2) & \\
\vdots & & & \ddots & \ddots
\end{array}\right)
$$

Indeed, by induction, we get that

$$
1-\sum_{l=0}^{k} \mu(l)=\prod_{l=0}^{k} \frac{f(l)}{1+f(l)}
$$

for any $k \in \mathbb{N} \cup\{0\}$. Since $\sum_{l=0}^{\infty} 1 / f(l) \geqslant \sum_{l=0}^{\infty} 1 /(l+1)=\infty$ it follows that μ is a probability measure on the set $\mathbb{N} \cup\{0\}$. Moreover, it is straightforward to verify that

$$
\begin{aligned}
f(0) \mu(0) & =1-\mu(0)=\sum_{l=1}^{\infty} \mu(l) \\
f(k-1) \mu(k-1) & =(1+f(k)) \mu(k),
\end{aligned}
$$

and hence $\mu Q=0$.
We define an inhomogeneous Markov process such that at every time N the state is the indegree of a uniformly chosen vertex from \mathcal{G}_{N}. In each time step, starting with state k we move to the newly added vertex with probability $1 /(N+1)$, hence adapting state 0 . Otherwise the indegree is increased by one with unconditional probability $f(k) /(N+1)$, or stays the same. Note that the transition matrix of this Markov chain at the time step $N \mapsto N+1$ is given by

$$
P^{(N)}:=I+\frac{1}{N+1} Q,
$$

and that

$$
\mu_{N}(k):=\mathbb{E}\left[X_{N}^{\mathrm{in}}(k)\right]=\mathbb{P}\left(Y_{N}^{0,1}=k\right),
$$

where $\left(Y_{N}^{l, m}\right)_{N} \geqslant m$ is the chain started at time $m \in \mathbb{N}$ in state $l \leqslant m-1$.
Next, fix $k \in \mathbb{N} \cup\{0\}$, let $m>k$ arbitrary, and denote by ν the restriction of μ to the set $\{m, m+1, \ldots\}$. Since μ is invariant under each $P^{(N)}$ we get

$$
\mu(k)=\mu P^{(m)} \cdots P^{(N)}(k)=\sum_{l=0}^{m-1} \mu(l) \mathbb{P}\left(Y_{N}^{l, m}=k\right)+\nu P^{(m)} \cdots P^{(N)}(k) .
$$

Note that in the N th step of the Markov chain, the probability to jump to state zero is $1 /(N+1)$ for all states in $\{1, \ldots, N-1\}$ and bigger than $1 /(N+1)$ for the state 0 . Thus one can couple the Markov chains $\left(Y_{N}^{l, m}\right)$ and $\left(Y_{N}^{0,1}\right)$ in such a way that

$$
\mathbb{P}\left(Y_{N+1}^{l, m}=Y_{N+1}^{0,1}=0 \mid Y_{N}^{l, m} \neq Y_{N}^{0,1}\right)=\frac{1}{N+1},
$$

and that once the processes meet at one site they stay together. Then

$$
\mathbb{P}\left(Y_{N}^{l, m}=Y_{N}^{0,1}\right) \geqslant 1-\prod_{i=m}^{N-1} \frac{i}{i+1} \longrightarrow 1
$$

Since, looking at the matrix products, we see $0 \leqslant \nu P^{(m)} \cdots P^{(N)}(k) \leqslant \mu([m, \infty))$, we get

$$
\limsup _{N \rightarrow \infty}\left|\mu(k)-\mathbb{P}\left(Y_{N}^{0,1}=k\right) \sum_{l=0}^{m-1} \mu(l)\right| \leqslant \mu([m, \infty)) .
$$

As $m \rightarrow \infty$ we thus get that

$$
\lim _{N \rightarrow \infty} \mu_{N}(k)=\mu(k) .
$$

In the next step we show that the sequence of the empirical indegree distributions $\left(X_{N}^{\mathrm{in}}\right)_{N \in \mathbb{N}}$ converges almost surely to μ. Note that $N X_{N}^{\mathrm{in}}(k)$ is a sum of n independent Bernoulli random variables. Thus Chernoff's inequality implies that for any $t>0$

$$
\mathbb{P}\left(X_{N}^{\mathrm{in}}(k) \leqslant \mathbb{E}\left[X_{N}^{\mathrm{in}}(k)\right]-t\right) \leqslant e^{-N t^{2} /\left(2 \mathbb{E}\left[X_{N}^{\mathrm{in}}(k)\right]\right)}=e^{-N t^{2} /\left(2 \mu_{N}(k)\right)} .
$$

Since

$$
\sum_{N=1}^{\infty} e^{-N t^{2} /\left(2 \mu_{N}(k)\right)}<\infty
$$

the Borel-Cantelli lemma implies that almost surely $\lim \inf _{N \rightarrow \infty} X_{N}^{\text {in }}(k) \geqslant \mu(k)$ for all $k \in \mathbb{N} \cup\{0\}$. If $A \subset \mathbb{N} \cup\{0\}$ we thus have by Fatou's lemma

$$
\liminf _{N \rightarrow \infty} \sum_{k \in A} X_{N}^{\mathrm{in}}(k) \geqslant \sum_{k \in A} \liminf _{N \rightarrow \infty} X_{N}^{\mathrm{in}}(k)=\mu(A) .
$$

Noting that μ is a probability measure and passing to the complementary events, we also get

$$
\limsup _{N \rightarrow \infty} \sum_{k \in A} X_{N}^{\mathrm{in}}(k) \leqslant \mu(A) .
$$

Hence, given $\epsilon>0$, we can pick $M \in \mathbb{N}$ so large that $\mu((M, \infty))<\epsilon$, and obtain for the total variation norm

$$
\begin{aligned}
& \underset{N \uparrow \infty}{\limsup } \frac{1}{2} \\
& \sum_{k=0}^{\infty}\left|X_{N}^{\mathrm{in}}(k)-\mu(k)\right| \\
& \leqslant \limsup _{N \uparrow \infty} \frac{1}{2} \sum_{k=0}^{M}\left|X_{N}^{\mathrm{in}}(k)-\mu(k)\right|+\frac{1}{2} \lim _{N \uparrow \infty} \sum_{k=M+1}^{\infty} X_{N}^{\mathrm{in}}(k)+\frac{1}{2} \mu((M, \infty)) \leqslant \epsilon .
\end{aligned}
$$

This establishes almost sure convergence of (X_{N}^{in}) to μ in the total variation norm.

