
Theorem 1. Let

µ(k) =
1

1 + f(k)

k−1∏
l=0

f(l)
1 + f(l)

for k ∈ N ∪ {0},

which is a sequence of probability weights. Then, almost surely,

lim
N→∞

X in
N = µ

in total variation norm.

We start by showing that µ is a probability distribution with µQ = 0, where

Q =


−f(0) f(0)

1 −(f(1) + 1) f(1)
1 −(f(2) + 1) f(2)
...

. . . . . .


Indeed, by induction, we get that

1−
k∑
l=0

µ(l) =
k∏
l=0

f(l)
1 + f(l)

for any k ∈ N ∪ {0}. Since
∑∞

l=0 1/f(l) >
∑∞

l=0 1/(l + 1) =∞ it follows that µ is a probability
measure on the set N ∪ {0}. Moreover, it is straightforward to verify that

f(0)µ(0) = 1− µ(0) =
∞∑
l=1

µ(l)

f(k − 1)µ(k − 1) = (1 + f(k))µ(k),

and hence µQ = 0.

We define an inhomogeneous Markov process such that at every time N the state is the indegree
of a uniformly chosen vertex from GN . In each time step, starting with state k we move to the
newly added vertex with probability 1/(N + 1), hence adapting state 0. Otherwise the indegree
is increased by one with unconditional probability f(k)/(N + 1), or stays the same. Note that
the transition matrix of this Markov chain at the time step N 7→ N + 1 is given by

P (N) := I +
1

N + 1
Q,

and that
µN (k) := E[X in

N (k)] = P(Y 0,1
N = k),

where (Y l,m
N )N > m is the chain started at time m ∈ N in state l 6 m− 1.

Next, fix k ∈ N ∪ {0}, let m > k arbitrary, and denote by ν the restriction of µ to the set
{m,m+ 1, . . . }. Since µ is invariant under each P (N) we get

µ(k) = µP (m) · · ·P (N)(k) =
m−1∑
l=0

µ(l) P(Y l,m
N = k) + νP (m) · · ·P (N)(k).
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Note that in the Nth step of the Markov chain, the probability to jump to state zero is 1/(N+1)
for all states in {1, . . . , N − 1} and bigger than 1/(N + 1) for the state 0. Thus one can couple
the Markov chains (Y l,m

N ) and (Y 0,1
N ) in such a way that

P(Y l,m
N+1 = Y 0,1

N+1 = 0 |Y l,m
N 6= Y 0,1

N ) = 1
N+1 ,

and that once the processes meet at one site they stay together. Then

P(Y l,m
N = Y 0,1

N ) > 1−
N−1∏
i=m

i

i+ 1
−→ 1.

Since, looking at the matrix products, we see 0 6 νP (m) · · ·P (N)(k) 6 µ([m,∞)), we get

lim sup
N→∞

∣∣∣µ(k)− P(Y 0,1
N = k)

m−1∑
l=0

µ(l)
∣∣∣ 6 µ([m,∞)).

As m→∞ we thus get that
lim
N→∞

µN (k) = µ(k).

In the next step we show that the sequence of the empirical indegree distributions (X in
N )N∈N

converges almost surely to µ. Note that NX in
N (k) is a sum of n independent Bernoulli random

variables. Thus Chernoff’s inequality implies that for any t > 0

P
(
X in
N (k) 6 E[X in

N (k)]− t
)

6 e−Nt
2/(2E[Xin

N (k)]) = e−Nt
2/(2µN (k)).

Since
∞∑
N=1

e−Nt
2/(2µN (k)) <∞,

the Borel-Cantelli lemma implies that almost surely lim infN→∞X in
N (k) > µ(k) for all k ∈ N∪{0}.

If A ⊂ N ∪ {0} we thus have by Fatou’s lemma

lim inf
N→∞

∑
k∈A

X in
N (k) >

∑
k∈A

lim inf
N→∞

X in
N (k) = µ(A).

Noting that µ is a probability measure and passing to the complementary events, we also get

lim sup
N→∞

∑
k∈A

X in
N (k) 6 µ(A).

Hence, given ε > 0, we can pick M ∈ N so large that µ((M,∞)) < ε, and obtain for the total
variation norm

lim sup
N↑∞

1
2

∞∑
k=0

∣∣X in
N (k)− µ(k)

∣∣
6 lim sup

N↑∞

1
2

M∑
k=0

∣∣X in
N (k)− µ(k)

∣∣+ 1
2 lim
N↑∞

∞∑
k=M+1

X in
N (k) + 1

2µ((M,∞)) 6 ε.

This establishes almost sure convergence of (X in
N ) to µ in the total variation norm.
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