Theorem 1. Let
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which is a sequence of probability weights. Then, almost surely,
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We start by showing that u is a probability distribution with u@Q = 0, where
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Indeed, by induction, we get that
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for any k € NU{0}. Since Y ;2 1/f(1) = > 72, 1/(l+ 1) = oo it follows that p is a probability
measure on the set NU {0}. Moreover, it is straightforward to verify that
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POk 1)k — 1) = (14 F(k)) ()
and hence pu@ = 0.

We define an inhomogeneous Markov process such that at every time N the state is the indegree
of a uniformly chosen vertex from Gy. In each time step, starting with state k we move to the
newly added vertex with probability 1/(N + 1), hence adapting state 0. Otherwise the indegree
is increased by one with unconditional probability f(k)/(/N + 1), or stays the same. Note that
the transition matrix of this Markov chain at the time step N — N + 1 is given by
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and that .
un(k) = E[XR (k)] = P(Yy' = k),

where (Y]i,’m)N >m is the chain started at time m € N in state [ <m — 1.

Next, fix k£ € NU {0}, let m > k arbitrary, and denote by v the restriction of u to the set
{m,m+1,...}. Since p is invariant under each P%™) we get
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Note that in the Nth step of the Markov chain, the probability to jump to state zerois 1/(N+1)
for all states in {1,..., N — 1} and bigger than 1/(N + 1) for the state 0. Thus one can couple
the Markov chains (Y]Cm) and (Y]?,’l) in such a way that
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and that once the processes meet at one site they stay together. Then
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Since, looking at the matrix products, we see 0 < vP™ ... PM (k) < p([m, 0)), we get
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As m — oo we thus get that
Jim (k) = (k).

In the next step we show that the sequence of the empirical indegree distributions (X}\‘}) NeN
converges almost surely to p. Note that NX (k) is a sum of n independent Bernoulli random
variables. Thus Chernoff’s inequality implies that for any ¢ > 0
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the Borel-Cantelli lemma implies that almost surely lim inf o X (k) > u(k) for all k € NU{0}.
If ACc NU{0} we thus have by Fatou’s lemma
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Noting that p is a probability measure and passing to the complementary events, we also get

lim sup Z Xin (A).

Hence, given € > 0, we can pick M € N so large that u((M,o0)) < €, and obtain for the total
variation norm
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This establishes almost sure convergence of (X%) to p in the total variation norm.



